

Deep Learning on Lie Groups for Skeleton-based Action Recognition

Zhiwu Huang, Chengde Wan, Thomas Probst, Luc Van Gool Computer Vision Lab @ ETH Zurich 22 July 2017

J. Shotton et al., "Real-time Human Pose Recognition in Parts From a Single Depth Image", *CVPR 2011*.

We develop a manifold network (LieNet) to deeply learn Lie group representations for robust action recognition based on skeletal data of human movement

Demo of the proposed LieNet on the NTU-RGB+D dataset released by *A. Shahroudy et al., CVPR 2016*

Special Rotation Group (Lie Group) representation for one skeleton

Skeleton with body bones

 $C = (R_{1,2}, R_{2,1}, \dots, R_{M,N}, R_{N,M})$ $\in SO(3) \times SO(3) \dots \times SO(3)$

R.Vemulapalli et al., CVPR 2014, CVPR 2016

Lie Group curve representation for one moving skeleton

R.Vemulapalli et al., CVPR 2014, CVPR 2016

Motivation A

- Speed variations (Temporal misalignment)
 - Compute a nominal curve and warp all the curves to this nominal using dynamic time warping (DTW) [M. Muller, 2007]

Additional time costTwo-step system

Motivation B

Lie group representations tend to be extremely high-dimensional
 Adopt PCA-like method to learn compact and discriminative features

$$C(t) = (R_{1,2}(t), R_{2,1}(t), \dots, R_{M,N}(t), R_{N,M}(t),)$$

$$\in SO(3) \times SO(3) \dots \times SO(3)$$

Quantitative evaluation

Accuracies on the G3D-Gaming, HDM05 and NTU RGB-D datasets Method

Method	USD-Gaining			T	
RBM+HMM [32]	86.40%		Method	RGB+D-subject	RGB+D-view
SE [/1]	87 73%		HBRNN [13]	59.07%	63.97%
$\frac{\text{SD}\left[41\right]}{\text{SO}\left[42\right]}$	87.25%		Deep RNN [37]	56.29%	64.09%
50 [42] 87.95 %			Deep LSTM [37]	60.69%	67.29%
LieNet-0Block	84.55%		PA-LSTM [37]	62.93%	70.27%
LieNet-1Block	85.16%		ST-LSTM [26]	69.2 %	77.7%
LieNet-2Blocks	86.67%		SF [41]	50.08%	52 76%
LieNet-3Blocks	89.10%		SD[41]	52 13%	53 12%
			30 [42]	52.1370	55.4270
	Method	HDM05	LieNet-0Block	53.54%	54.78%
	SPDNet [18]	61.45%±1.12	LieNet-1Block	56.35%	60.14%
[SE [41]	$70.26\% \pm 2.89$	LieNet-2Blocks	58.02%	62.52%
	SO [42]	71.31%±3.21	LieNet-3Blocks	61.37%	66.95%
	LieNet-0Block	71.26%±2.12			
	LieNet-1Block	73.35%±1.14			
	LieNet-2Blocks	75 78%+2 26			

Qualitative analysis

Reconstruction of different LieNet layers for four action sequences

The patterns for specific motion classes become more discriminative when arriving at the output layer

Deep Learning on Lie Groups for Skeleton-based Action Recognition

Thank you for your time and attention!