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Compound Quality Mapping
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Color Adjustment

Illumination Enhancement

Texture Sharpening etc….
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Data Collection for Compound Image and Video 
Quality Mapping



Data Collection I: Paired Image Retouching (expensive expert effort)
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Original Retouched by expert-A Retouched by expert-B



Data Collection II: Weakly-paired Collection (expensive alignment)
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DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks, Ignatov et al., ICCV 2017.
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non-linear transform and a crop resulting in two images of the 
same resolution representing the same scene

an overlapping region is determined
by SIFT descriptor matching



Data Collection II: Weakly-paired Video Collection? (more expensive)
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The Vid3oC and IntVID Datasets for Video Super Resolution and Quality Mapping. Sohyeong Kim, Guanju Li, Dario 
Fuoli, Martin Danelljan, Zhiwu Huang, Shuhang Gu and Radu Timofte. ICCV 2019 Workshops.



Data Collection II: Unpaired Collection (Cheaper)
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Supervised Deep Learning Methods for 
Compound Image Quality Mapping



Deep Bilateral Learning for Real-Time Image Enhancement (HDRNet)
Idea: consumes a low-resolution version of the input image, followed by an edge-preserving 
upsampling to the full-resolution image in a bilateral filtering fashion
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Deep Bilateral Learning for Real-Time Image Enhancement, GHARBI et al., TOG 2017.

Optimized by 
L2-loss



Deep Bilateral Learning for Real-Time Image Enhancement (HDRNet)
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Deep Bilateral Learning for Real-Time Image Enhancement, GHARBI et al., TOG 2017.



Underexposed Photo Enhancement (UPE)
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Idea: learn an image-to-illumination (instead of image-to-image) mapping

Underexposed Photo Enhancement using Deep Illumination Estimation, Wang et al., CVPR 2019.



Underexposed Photo Enhancement (UPE)
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Loss function: 

Reconstruction

Smoothness

Color

Underexposed Photo Enhancement using Deep Illumination Estimation, Wang et al., CVPR 2019.



Underexposed Photo Enhancement (UPE)
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Visual Comparison on MIT-Adobe FiveK 

Underexposed Photo Enhancement using Deep Illumination Estimation, Wang et al., CVPR 2019.



Underexposed Photo Enhancement (UPE)
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Quantitative Comparison on MIT-Adobe FiveK 

Underexposed Photo Enhancement using Deep Illumination Estimation, Wang et al., CVPR 2019.



DSLR Photo Enhancement (DSLR-PE)
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DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks, Ignatov  et al., ICCV 2017.

Idea: learn the translation function 
using a residual convolutional neural 
network with a composite perceptual 
error function that combines content, 
color and adversarial texture losses

 



DSLR Photo Enhancement (DSLR-PE)

Typical artifacts 
generated by our 
method (bottom) 
compared with 
original iPhone 
images (top)
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DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks, Ignatov  et al., ICCV 2017.
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Weakly-Supervised Deep Learning Methods for 
Compound Image Quality Mapping
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Weakly Supervised Photo Enhancer（WESPE）

-Content Consistency Loss

-Adversarial Color Loss

-Adversarial Texture Loss

-Total Variation Loss

 

WESPE: weakly supervised photo enhancer for digital cameras, Ignatov  et al., CVPRW 2018.
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Weakly Supervised Photo Enhancer（WESPE）

WESPE: weakly supervised photo enhancer for digital cameras, Ignatov  et al., CVPRW 2018.
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Deep Photo Enhancer (DPE)

-Identity Mapping Loss:

-Cycle-Consistency Loss:

-Adversarial Loss:

Deep photo enhancer: Unpaired learning for image enhancement from photographs with GANs, Chen et al., CVPR 2018.
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Deep Photo Enhancer (DPE)

Deep photo enhancer: Unpaired learning for image enhancement from photographs with GANs, Chen et al., CVPR 2018.

Preference matrix from AMT user study

Input Enhanced by DPE
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Limitation for Compound Quality Mapping and 
High-Resolution Image Treatment

Model Limitation 
(Compound 

Quality)

Limitation 
(High 

Resolution)

WESPE Color and 
Texture(Not 
sufficient)

Patch-wise 
Enhancement

DPE No 
consideration 

on 
mixed-percept

ual 
improvement

Down-scaling
Downscaling

(low-res, noisy, 
blurry)

Patch-wise Enhancement
(spatial inconsistency)

Input
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Divide-and-Conquer Adversarial Learning for 
High-resolution Image and Video Enhancement

Zhiwu Huang, Danda Pani Paudel, Guanju Li, JiqingWu, Radu Timofte, Luc Van Gool, arXiv preprint arXiv:1910.10455.
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Mixed-Perception

Perception1

Freq1

Dim1 … DimN

… FreqM

Perception2

Freq1

Dim1 … DimN

… FreqM

Step 1#: divide

divide

divide

Step 2#: 
conquer

Step 3#: 
combine

Step 1#: divide

divide

divide

Divide-and-Conquer Inspired Method

Additive

Multiplicative

Freq1

FreqM

Dim1

Dim2

… …



global concatenation

 
 

  
 

local concatenation
local concatenation

 

 

Input/output Conv+ReLU+BN ConcatResizePooling / OrthoProj 

  
frequency-based input

… … 
  

dim-based approximation

(a) Enhancer for Peception-based Division (b) Discriminator for Freq- and Dim-based Division

sum

 

 

 

Network Design
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Perception-based Division
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Frequency-based Division

28



Dimension-based Division and Optimization
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Perception

Additive

Freq1

Dim1 … DimN

… FreqM

Multiplicative

Freq1

Dim1 … DimN

… FreqM

Loss Design

Adaptive Penalty

Adaptive SWGAN loss
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Evaluation on Toy Data



High-resolution Issue for Image Enhancement

Downscaling
(low-res, noisy, 

blurry)

Patch-wise Enhancement
(spatial inconsistency)

Multi-scale Photo 
Enhancement (MUSPE)

Input
Deep Photo 
Ehancer (DPE) 
[Chen et al in 
CVPR’18] Weakly Supervised Photo 

Enhancer (WESPE) [our work 
in CVPR‘18 workshop

Our current work
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fine

coarse
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Multi-scale Extension of DACAL for Image Enhancement

 

 

 

 

 

 

 

 

Input/output Conv+ReLU+BN ConcatResizePooling/OrthoProj 
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Input WESPE [Ignatov, CVPRW’18]

DPE [Chen, CVPR’18] Proposed MUSPE [ICLR’20 submission]
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Input WESPE [Ignatov, CVPRW’18]

DPE [Chen, CVPR’18] Proposed MUSPE [ICLR’20 submission]
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Input WESPE [Ignatov, CVPRW’18] DPE [Chen, CVPR’18] Proposed MUSPE
[ICLR’20 submission]



Video Quality Mapping = Image Quality Mapping + Temporal Smoothing
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Recurrent Extension of DACAL for Video Enhancement
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Perframe-DACAL

Recurrent-DACAL
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Perframe-DACAL

Recurrent-DACAL (fine-tuned on Retouched&DSLR images)
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Perframe-DACAL

Recurrent-DACAL
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Perframe-DACAL

Recurrent-DACAL (fine-tuned on Retouched&DSLR images)
 



Conclusion

❏ Supervision 
❏ Weak-supervision is cheaper

❏ Compound quality mapping
❏ Divide-and-conquer inspired algorithm is promising 

❏ High-resolution image treatment 
❏ Multiscaled training is helpful

❏ Video enhancement 
❏ Recurrent model works well
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