

Compound Quality Mapping on High-resolution Images and Videos

Danda Pani Paudel & Zhiwu Huang Computer Vision Lab @ ETH Zurich

Compound Quality Mapping

Color Adjustment

Illumination Enhancement

Texture Sharpening

etc....

Data Collection for Compound Image and Video Quality Mapping

Data Collection I: Paired Image Retouching (expensive expert effort)

Original

Retouched by expert-A

Retouched by expert-B

Data Collection II: Weakly-paired Collection (expensive alignment)

Camera	Sensor	Image size	Photo quality
iPhone 3GS	3 MP	2048×1536	Poor
BlackBerry Passport	13 MP	4160×3120	Mediocre
Sony Xperia Z	13 MP	2592×1944	Average
Canon 70D DSLR	20 MP	3648×2432	Excellent

DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks, Ignatov et al., ICCV 2017.

Computer

non-linear transform and a crop resulting in two images of the same resolution representing the same scene

CVL^m Data Collection II: Weakly-paired Video Collection? (more expensive)

Vid3oC Dataset

- Three cameras
- 82 recordings
- 328 videos
- Includes stereo depth
- Canon 5D Mark IV
 high quality DSLR
- Huawei P20 high-end ZED RGB smartphone (Left)
- ZED stereo camera
- AIM 2019 Video SR

The Vid3oC and IntVID Datasets for Video Super Resolution and Quality Mapping. Sohyeong Kim, Guanju Li, Dario Fuoli, Martin Danelljan, Zhiwu Huang, Shuhang Gu and Radu Timofte. ICCV 2019 Workshops.

CV Lab

Data Collection II: Unpaired Collection (Cheaper)

Poor-quality Image Dataset

High-quality Image Dataset

Supervised Deep Learning Methods for Compound Image Quality Mapping

CV Compu Vision Lab

Deep Bilateral Learning for Real-Time Image Enhancement (HDRNet)

Idea: consumes a low-resolution version of the input image, followed by an edge-preserving upsampling to the full-resolution image in a bilateral filtering fashion

Deep Bilateral Learning for Real-Time Image Enhancement, GHARBI et al., TOG 2017.

CV L^{Compute} Vision Lab

Deep Bilateral Learning for Real-Time Image Enhancement (HDRNet)

12 megapixel 16-bit linear input (tone-mapped for visualization)

tone-mapped with HDR+ 400 - 600 ms

processed with our algorithm 61 ms, PSNR = 28.4 dB

Deep Bilateral Learning for Real-Time Image Enhancement, GHARBI et al., TOG 2017.

Vision Lab

Underexposed Photo Enhancement (UPE)

Idea: learn an image-to-illumination (instead of image-to-image) mapping

Underexposed Photo Enhancement (UPE)

Loss function:

$$\mathcal{L} = \sum_{i=1}^{N} \omega_r \mathcal{L}_r^i + \omega_s \mathcal{L}_s^i + \omega_c \mathcal{L}_c^i$$
Reconstruction $\mathcal{L}_r^i = \|I_i - S * \tilde{I}_i\|^2$,
 $s.t. \ (I_i)_c \le (S)_c \le 1$, \forall pixel channel c
Smoothness $\mathcal{L}_s^i = \sum_p \sum_c \omega_{x,c}^p (\partial_x S_p)_c^2 + \omega_{y,c}^p (\partial_y S_p)_c^2$
Color $\mathcal{L}_c^i = \sum_p \angle ((\mathcal{F}(I_i))_p, (\tilde{I}_i)_p)$

C V Lab

Underexposed Photo Enhancement (UPE)

Underexposed Photo Enhancement (UPE)

Ours	23.04	0.893
Ours with \mathcal{L}_r , with \mathcal{L}_s , w/o \mathcal{L}_c	22.09	0.004
Ours with C with C where C	22.80	0.001
Ours with \mathcal{L}_{r} , w/o \mathcal{L}_{s} , w/o \mathcal{L}_{c}	22.31	0.871
Ours w/o \mathcal{L}_r , w/o \mathcal{L}_s , w/o \mathcal{L}_c	21.97	0.867
Distort-and-Recover [4]	20.97	0.841
White-Box [3]	18.57	0.701
DPE [1]	22.15	0.850
HDRNet [2]	21.96	0.866
Method	PSNR	SSIM

Quantitative Comparison on MIT-Adobe FiveK

DSLR Photo Enhancement (DSLR-PE)

Idea: learn the translation function using a residual convolutional neural network with a composite perceptual error function that combines content, color and adversarial texture losses

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{content}} + 0.4 \cdot \mathcal{L}_{\text{texture}} + 0.1 \cdot \mathcal{L}_{\text{color}} + 400 \cdot \mathcal{L}_{\text{tv}}$$

$$\mathcal{L}_{\text{color}}(X, Y) = \|X_b - Y_b\|_2^2$$

$$\mathcal{L}_{\text{content}} = \frac{1}{C_j H_j W_j} \|\psi_j (F_{\mathbf{W}}(I_s)) - \psi_j (I_t)\|$$

$$\mathcal{L}_{\text{tv}} = \frac{1}{CHW} \|\nabla_x F_{\mathbf{W}}(I_s) + \nabla_y F_{\mathbf{W}}(I_s)\|$$

$$\mathcal{L}_{\text{content}} \quad \mathcal{L}_{\text{texture}} = -\sum_i \log D(F_{\mathbf{W}}(I_s), I_t)$$

DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks, Ignatov et al., ICCV 2017.

DSLR Photo Enhancement (DSLR-PE)

Typical artifacts generated by our method (bottom) compared with original iPhone images (top)

DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks, Ignatov et al., ICCV 2017.

Weakly-Supervised Deep Learning Methods for Compound Image Quality Mapping

Vision Lab

Weakly Supervised Photo Enhancer(WESPE)

-Content Consistency Loss

 $\mathcal{L}_{\text{content}} = \frac{1}{C_j H_j W_j} \| \psi_j (x) - \psi_j (\tilde{x}) \|,$

-Adversarial Color Loss

 $\mathcal{L}_{\text{color}} = -\sum_{i} \log D_c(G(x)_b).$

-Adversarial Texture Loss

$$\mathcal{L}_{\text{texture}} = -\sum_{i} \log D_t(G(x)_g)$$

-Total Variation Loss

$$\mathcal{L}_{\text{tv}} = \frac{1}{CHW} \|\nabla_x G(x) + \nabla_y G(x)\|,$$

WESPE: weakly supervised photo enhancer for digital cameras, Ignatov et al., CVPRW 2018.

Weakly Supervised Photo Enhancer (WESPE)

DPED images	APE		WESPE	Weakly St [DIV2K]	pervised WESPE [DPED]		Fully Supervised	
0	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
iPhone	17.28	0.86	17.76	0.88	18.11	0.90	21.35	0.92
BlackBerry	18.91	0.89	16.71	0.91	16.78	0.91	20.66	0.93
Sony	19.45	0.92	20.05	0.89	20.29	0.93	22.01	0.94

WESPE: weakly supervised photo enhancer for digital cameras, Ignatov et al., CVPRW 2018.

Vision Lab

Deep Photo Enhancer (DPE)

-Identity Mapping Loss:

$$I = \mathbb{E}_{x,y'} \left[MSE(x,y') \right] + \mathbb{E}_{y,x'} \left[MSE(y,x') \right].$$

-Cycle-Consistency Loss:

$$C = \mathop{\mathbb{E}}_{\boldsymbol{x},\boldsymbol{x}^{\prime\prime}} \Big[MSE(\boldsymbol{x},\boldsymbol{x}^{\prime\prime}) \Big] + \mathop{\mathbb{E}}_{\boldsymbol{y},\boldsymbol{y}^{\prime\prime}} \Big[MSE(\boldsymbol{y},\boldsymbol{y}^{\prime\prime}) \Big].$$

-Adversarial Loss:

$$A_D = \mathbb{E}_x \Big[D_X(x) \Big] - \mathbb{E}_{x'} \Big[D_X(x') \Big] + \\ \mathbb{E}_y \Big[D_Y(y) \Big] - \mathbb{E}_{y'} \Big[D_Y(y') \Big], \\ A_G = \mathbb{E}_{x'} \Big[D_X(x') \Big] + \mathbb{E}_{y'} \Big[D_Y(y') \Big].$$

Deep photo enhancer: Unpaired learning for image enhancement from photographs with GANs, Chen et al., CVPR 2018.

V Vision Lab

Deep Photo Enhancer (DPE)

the strange ware	the states where		
	- Andrew Constanting of the second		Cycle
		CycleGAN	-
		DPED	368
		NPEA	373
	A CONTRACT OF A LA	CLHE	37′
		ours	389
			Preferen
	11		

In	nut
111	pul

Enhanced by DPE

	CycleGAN	DPED	NPEA	CLHE	ours	total
ycleGAN	-	32	27	23	11	93
DPED	368	-	141	119	29	657
NPEA	373	259	-	142	50	824
CLHE	377	281	258	-	77	993
ours	389	371	350	323	-	1433

Preference matrix from AMT user study

Deep photo enhancer: Unpaired learning for image enhancement from photographs with GANs, Chen et al., CVPR 2018.

CV Compute Vision Lob

Limitation for Compound Quality Mapping and High-Resolution Image Treatment

Downscaling (low-res, noisy, blurry)

Input

Patch-wise Enhancement (spatial inconsistency)

Model	Limitation (Compound Quality)	Limitation (High Resolution)
WESPE	Color and Texture(Not sufficient)	Patch-wise Enhancement
DPE	No consideration on mixed-percept ual improvement	Down-scaling

×

Divide-and-Conquer Adversarial Learning for High-resolution Image and Video Enhancement

Zhiwu Huang, Danda Pani Paudel, Guanju Li, JiqingWu, Radu Timofte, Luc Van Gool, arXiv preprint arXiv:1910.10455.

CV Lab

Divide-and-Conquer Inspired Method

V Vision Lab

Network Design

Perception-based Division

(a) Input

(b) Additive component

(d) Additive map

(e) Multiplicative map

(c) Multiplicative component

(f) Fused Map

Frequency-based Division

[1] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile devices with deep convolutional networks. [2] Anoosheh, Asha, et al. "Night-to-day image translation for retrieval-based localization."

Dimension-based Division and Optimization

V Vision Lab

Loss Design

CV Lob Computer Vision

Evaluation on Toy Data

CV Lab

High-resolution Issue for Image Enhancement

Input

Downscaling (low-res, noisy, blurry) Deep Photo Ehancer (DPE) [Chen et al in CVPR'18]

Patch-wise Enhancement (spatial inconsistency) Weakly Supervised Photo Enhancer (WESPE) [our work in CVPR '18 workshop

Multi-scale Photo Enhancement (MUSPE) *Our current work*

fine

CV Lab

Multi-scale Extension of DACAL for Image Enhancement

CVL^{Compute} Vision Lab

Table 1: PSNR and SSIM results for the MIT-Adobe FiveK [42] test images. Here, WB and DR indicate the White-Box and Distort-and-Recover methods, respectively. $MUSPE_{l_1}$, $MUSPE_{l_2}$, $MUSPE_{l_3}$ and $MUSPE_l$ represent the use of individual additive, individual multiplicative, multiplicative cascaded by additive, and our suggested parallel fusion (two-stream strategy), respectively. $MUSPE_h$ is our higher-scale version. $PSNR_d/SSIM_d$ and $PSNR_f/SSIM_f$ indicate the results on downscaled images and full-resolution images, respectively.

	WB	DR	DPED	DPE	$MUSPE_{l_1}$	$MUSPE_{l_2}$	$MUSPE_{l_3}$	$MUSPE_l$	$MUSPE_h$
$PSNR_d$	18.86	21.64	21.05	22.10	22.73	22.99	23.01	23.52	24.15
\mathbf{PSNR}_{f}	19.09	21.52	20.86	21.65	22.43	22.69	23.02	23.56	24.07
$SSIM_d$	0.928	0.936	0.922	0.947	0.958	0.942	0.949	0.959	0.962
$SSIM_f$	0.920	0.922	0.916	0.894	0.948	0.942	0.940	0.954	0.956

Table 2: PSNR and SSIM results for the DPED [14] test 100×100 image patches. Here, l, f, d for MUSPE represent the use of our proposed sliced-perception, sliced-frequency and sliced-dimension learning respectively. MUSPE_h is our higher-scale version.

	WESPE	DPE	MUSPE _l	$MUSPE_{l+f}$	$MUSPE_{l+f+d}$	$MUSPE_h$
PSNR ₁₀₀	17.45	18.53	19.62	20.01	20.43	20.90
$SSIM_{100}$	0.854	0.861	0.868	0.869	0.872	0.874

Input

DPE [Chen, CVPR'18]

WESPE [Ignatov, CVPRW'18]

Proposed MUSPE [ICLR'20 submission]

Input

DPE [Chen, CVPR'18]

WESPE [Ignatov, CVPRW'18]

Proposed MUSPE [ICLR'20 submission]

Input

[ICLR'20 submission]

Video Quality Mapping = Image Quality Mapping + Temporal Smoothing

Recurrent Extension of DACAL for Video Enhancement

Perframe-DACAL

Recurrent-DACAL

Perframe-DACAL

Recurrent-DACAL (fine-tuned on Retouched&DSLR images)

Perframe-DACAL

Recurrent-DACAL

Perframe-DACAL

Recurrent-DACAL (fine-tuned on Retouched&DSLR images)

Conclusion

Supervision

- □ Weak-supervision is cheaper
- Compound quality mapping
 - Divide-and-conquer inspired algorithm is promising
- High-resolution image treatment
 - Multiscaled training is helpful

Video enhancement

Recurrent model works well