

Sliced Wasserstein Generative Models for Image & Video Generation and Enhancement

Zhiwu Huang Computer Vision Lab @ ETH Zurich

Presented Papers

Sliced Wasserstein Generative Models

Jiqing Wu*, **Zhiwu Huang***, Dinesh Acharya, Wen Li, Janine Thoma, Danda Pani Paudel, Luc Van Gool. (*'indicates equal contributions*) *Computer Vision and Pattern Recognition (CVPR), 2019*

 Divide-and-Conquer Adversarial Learning for High-resolution Photo Enhancement Zhiwu Huang, Danda Pani Paudel, Guanju Li, Jiqing Wu, Radu Timofte, Luc Van Gool. Submitted to The International Conference on Learning Representations (ICLR), 2020

E

Hints for Real or Fake?

CV Lob

Text is uninterpretable

Background is surreal

Asymmetry

Messy hair

Weird teeth

Non-stereotypical gender

Images from https://medium.com/@kcimc/how-to-recognize-fake-ai-generated-images-4d1f6f9a2842

From KL and JS Divergence to Wasserstein Distance

low dimensional manifolds in high dimension space hardly have overlaps

CV Lob

Wasserstein Distance – High Sample Complexity

Divide and Conquer

V Compute Vision Lab

Sliced Wasserstein Distance – 1D case

♦ Optimal map (closed form, increasing arrangement): $\tau(x) = F_Q^{-1} \circ F_P(x)$, where F_P , F_Q is the corresponding cumulative distribution functions (CDFs)

CV Lob

Sliced Wasserstein Distance – High Projection Complexity

 $SW_p(P,Q) = \left(\int_{\Omega} W_p(\pi_{\theta}^*P, \pi_{\theta}^*Q)d\theta\right)^{\frac{1}{p}}$, where Ω is a unit sphere, $\pi_{\theta}^*P = P \circ \pi_{\theta}$, $\pi_{\theta}(x) = \theta^T x$

Infinitely many random unit projections

V Compu Vision Lab

Proposed Sliced Wasserstein Distance

- Learnable orthogonal projections for Radon Transform $\pi_{\theta}(x) = \theta^T x$ in a deep learning manner
 - Orthogonal projections vs. unit projections
 - More efficient to cover entire space
 - Trainable net weights vs. random weights
 - More compact

V Comput Vision Lab

Proposed Sliced Wasserstein Distance

- Learnable orthogonal projections for Radon Transform $\pi_{\theta}(x) = \theta^T x$ in a deep learning manner
- Differetiable1D transport map $\tau_{\theta} = (\pi_{\theta}^* F_Q)^{-1} \circ \pi_{\theta}^* F_P$,
 - 1D PDF estimation using soft histogram assignment

• $\frac{e^{-\alpha \|y-c_i\|^2}}{\sum_{j=1}^l e^{-\alpha \|y-c_j\|^2}}$ to the *i*-th bin, where c_i are the *i*-th bin, center

 (Inverse) 1D CDF estimation using linear interpolation

CV Compute Vision Lab

Proposed Sliced Wasserstein Distance

- Learnable orthogonal projections for Radon Transform $\pi_{\theta}(x) = \theta^T x$ in a deep learning manner
- Differetiable1D transport map $\tau_{\theta} = (\pi_{\theta}^* F_Q)^{-1} \circ \pi_{\theta}^* F_P$,
- Dual form (non-linearity *f*):

$$\int_{\mathbb{S}^{n-1}} \left(\sup_{f \in \operatorname{Lip}^k} \mathbb{E}_{X_{\theta} \sim \pi_{\theta}^* P_X} [f(X_{\theta})] - \mathbb{E}_{Y_{\theta} \sim \pi_{\theta}^* P_Y} [f(Y_{\theta})] \right) d\theta$$

V Vision Lab

Proposed Sliced Wasserstein Distance

- Learnable orthogonal projections for Radon Transform $\pi_{\theta}(x) = \theta^T x$ in a deep learning manner
- Differetiable1D transport map $\tau_{\theta} = (\pi_{\theta}^* F_Q)^{-1} \circ \pi_{\theta}^* F_P$,
- Dual form (non-linearity *f*):
- Network training: updating orthogonal weights on Stiefel manifolds

13. June 2019

CV Lob

How AE based generative models work?

- Reconstruction with penalization on latent variables
 - $\min_{f}(f,g) = \mathbb{E}_{q(z)}[\log p(x|z)] KL(q(z)||p(z))$

Images from Namju Kim

Proposed Sliced Wasserstein Auto-Encoder (SWAE)

Algorithm 1 The proposed primal SWD block	Algorithm 2 The proposed SWAE
Require: Orthogonal matrix $O_{\Theta} = [\theta_1, \dots, \theta_r] \in \mathbb{R}^{r \times r}$, batch of latent codes $M_y = [y_1, \dots, y_b] \in \mathbb{R}^{r \times b}$, batch of Gaussian noise $M_z = [z_1, \dots, z_b] \in \mathbb{R}^{r \times b}$, and bin number l Output: Batch of transferred latent codes $M_{\tilde{y}} = [\tilde{y}_1, \dots, \tilde{y}_b]$ for $i \leftarrow 1, r$ do $y'_i = \theta_i^T M_y, z'_i = \theta_i^T M_z$ $y''_i = \frac{y'_i - \min_j \{y'_{i,j}\}}{\max_j \{y'_{i,j}\} - \min_j \{y'_{i,j}\}}, z''_i = \frac{z'_i - \min_j \{z'_{i,j}\}}{\max_j \{z'_{i,j}\} - \min_j \{z'_{i,j}\}},$ $y'_{i,j}, z'_{i,j}$ are the j -th element of y'_i, z'_i respectively. Compute soft PDF histogram $p_{y''_i}, p_{z''_i}$ of y''_i, z''_i with l bins Compute CDF $F_{y''_i}, F_{z''_i}$ of $p_{y''_i}, p_{z''_i}$ Compute $F_{y''_i}(y''_i)$ element-wise by linear interpolation $\hat{y}_i = (\max_j \{z'_{i,j}\} - \min_j \{z'_{i,j}\})(F_{z''_i})^{-1}F_{y''_i}(y''_i) + \min_j \{z'_{i,j}\}$ end for	Require: Primal SWD block number m , batch size b , decoder G and encoder $Q = S_{p,m} \circ \ldots \circ S_{p,2} \circ S_{p,1} \circ E$, training steps h, training hyperparameters, etc. for $t \leftarrow 1, h$ do Sample real data $M_x = [x_1, \ldots, x_b]$ from P_X Sample Gaussian noise $M_z = [z_1, \ldots, z_b]$ from $\mathcal{N}(0, 1)$ Update the weights w of Q and G by descending: $w \leftarrow \operatorname{Adam}(\nabla_w(\frac{1}{b} M_x - G(Q(M_x, M_z)) _2^2), w))$ end for

Compute $M_{\tilde{y}} = O_{\Theta} M_{\hat{y}}^T$, $M_{\hat{y}} = [\hat{y}_1^T, \dots, \hat{y}_r^T]$

20

How Generative Adversarial Nets (GANs) work?

- Two-player game (min-max objective function)
 - $\min_{G} \max_{D}(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{x \sim p_{z}(z)}[\log(1 D(G(z)))]$

Images from Namju Kim

CVL^C Proposed Sliced Wasserstein Generative Adversarial Nets (SWGAN)

Algorithm 3 The proposed dual SWD block	Algorithm 4 The proposed SWGAN
Require: Orthogonal matrix $O_{\Theta} = [\theta_1, \dots, \theta_r] \in \mathbb{R}^{r \times r}$ and batch of latent codes $M_y = [y_1, \dots, y_b] \in \mathbb{R}^{r \times b}$.	Require: Number of dual SWD blocks m , batch size b , generator G and discriminator $D = [S_{d,1} \circ E, \ldots, S_{d,m} \circ E]^T$, latent code dimension m . Lineabity constant b , training stops b , training hyperperpendent.
for $i \leftarrow 1, r$ do Compute $u' = \theta^T M$	sion r, Lipschitz constant k, training steps n, training hyperparameters, etc. for $t \neq -1$ h do
Compute $\mathbf{y}_i' = \mathbf{v}_i \ \mathbf{y}_i'$ element-wise, where $F = (F_1, \dots, F_r)$ are one-dimensional functions to approximate the f in Eq. 10. end for $\tilde{\mathbf{y}} = [\mathbf{y}_1'', \dots, \mathbf{y}_b'']^T$	Sample real data $M_{\boldsymbol{x}} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_b]$ from P_X Sample Gaussian noise $M_{\boldsymbol{z}} = [\boldsymbol{z}_1, \dots, \boldsymbol{z}_b]$ from $\mathcal{N}(0, 1)$ Sample two vectors $\boldsymbol{\mu}_1, \boldsymbol{\mu}_2$ from uniform distribution $U[0, 1]$ and for $l = 1, \dots, b$ calculate the elements of $M_{\hat{\boldsymbol{x}}}, M_{\hat{\boldsymbol{y}}}$: $\hat{\boldsymbol{x}}_l = (1 - \mu_{1,l})\boldsymbol{x}_l + \mu_{1,l}G(\boldsymbol{z}_l)$ $\hat{\boldsymbol{y}}_l = (1 - \mu_{2,l})E(\boldsymbol{x}_l) + \mu_{2,l}E(G(\boldsymbol{z}_l))$ Update the weights \boldsymbol{w}_G of G by descending:
	$\boldsymbol{w}_{G} \leftarrow \operatorname{Adam}(\nabla_{\boldsymbol{w}_{G}}(\frac{1}{b}\sum_{j,i=1}^{r\times m,b}D_{ji}(G(\boldsymbol{M}_{\boldsymbol{z}}))), \boldsymbol{w}_{G})$ Update the weights \boldsymbol{w}_{D} of D by descending: $\boldsymbol{w}_{D} \leftarrow \operatorname{Adam}(\nabla_{\boldsymbol{w}_{D}}(\frac{1}{b}\sum_{j,i=1}^{r\times m,b}(D_{ji}(\boldsymbol{M}_{\boldsymbol{x}}) - D_{ji}(G(\boldsymbol{M}_{\boldsymbol{z}})) + \lambda_{1} \ \nabla_{\boldsymbol{M}_{\boldsymbol{\hat{x}}}}D(\boldsymbol{M}_{\boldsymbol{\hat{x}}})\ _{2}^{2} + \lambda_{2} \ \nabla_{\boldsymbol{M}_{\boldsymbol{\hat{y}}}}F(\boldsymbol{M}_{\boldsymbol{\hat{y}}}) - k \cdot 1\ _{2}^{2}), \boldsymbol{w}_{D}), \text{ where we compute the gradients of } F \text{ element-wise.}$ end for

PG-SWGAN

Frechet Inception Distance (FID)

	AMT Preference
PG-WGAN	0.45
PG-SWGAN	0.55

CV Lob

Progressive Growing Technique for Video Generation

Frechet Inception Distance (FID)

PG-SWGAN-3D

AMT Preference PG-WGAN 0.46 PG-SWGAN 0.54

Mixed-Perception Issue for Image Enhancement

CVL^{Computer} Vision

Color Adjustment

Illumination Enhancement

Texture Sharpening

Divide and Conquer

CV Lob **Hierarchically Multisliced Methodology** Perception Step 1#: divide Step 1#: divide Step 3#: combine divide divide Freq1 FreqM Freq1 FreqM divide divide Step 2#: Dim1 DimN Dim1 DimN conquer Freq1 Additive Dim1 -Dim2

FreaM

Multiplicative

CVL^{Computer} Vision Lob

Hierarchically Multisliced Methodology

CV Lob

Hierarchically Multisliced Methodology

CV Lob

High-resolution Issue for Image Enhancement

Input

Downscaling (low-res, noisy, blurry) Deep Photo Ehancer (DPE) [Chen et al in CVPR'18]

Patch-wise Enhancement (spatial inconsistency) Weakly Supervised Photo Enhancer (WESPE) [our work in CVPR'18 workshop

Multi-scale Photo Enhancement (MUSPE) *Our current work*

fine

Multi-scale Extension of DACAL for Image Enhancement

Table 1: PSNR and SSIM results for the MIT-Adobe FiveK [42] test images. Here, WB and DR indicate the White-Box and Distort-and-Recover methods, respectively. $MUSPE_{l_1}$, $MUSPE_{l_2}$, $MUSPE_{l_3}$ and $MUSPE_l$ represent the use of individual additive, individual multiplicative, multiplicative cascaded by additive, and our suggested parallel fusion (two-stream strategy), respectively. $MUSPE_h$ is our higher-scale version. $PSNR_d/SSIM_d$ and $PSNR_f/SSIM_f$ indicate the results on downscaled images and full-resolution images, respectively.

	WB	DR	DPED	DPE	$MUSPE_{l_1}$	$MUSPE_{l_2}$	$MUSPE_{l_3}$	MUSPE _l	$MUSPE_h$
PSNR _d	18.86	21.64	21.05	22.10	22.73	22.99	23.01	23.52	24.15
PSNR_f	19.09	21.52	20.86	21.65	22.43	22.69	23.02	23.56	24.07
SSIM _d	0.928	0.936	0.922	0.947	0.958	0.942	0.949	0.959	0.962
SSIM_f	0.920	0.922	0.916	0.894	0.948	0.942	0.940	0.954	0.956

Table 2: PSNR and SSIM results for the DPED [14] test 100×100 image patches. Here, l, f, d for MUSPE represent the use of our proposed sliced-perception, sliced-frequency and sliced-dimension learning respectively. MUSPE_h is our higher-scale version.

	WESPE	DPE	MUSPE _l	$MUSPE_{l+f}$	$MUSPE_{l+f+d}$	$MUSPE_h$
PSNR ₁₀₀	17.45	18.53	19.62	20.01	20.43	20.90
$SSIM_{100}$	0.854	0.861	0.868	0.869	0.872	0.874

Input

DPE [Chen, CVPR'18]

WESPE [Ignatov, CVPRW'18]

Proposed MUSPE [ICLR'20 submission]

 $CVL^{^{Computer}}_{^{Vision}}$

Input

DPE [Chen, CVPR'18]

WESPE [Ignatov, CVPRW'18]

Proposed MUSPE [ICLR'20 submission]

 $CVL^{\text{Computer}}_{\text{Vision}}$

Input

WESPE [Ignatov, CVPRW'18] DPE [Chen, CVPR'18]

Proposed MUSPE [ICLR'20 submission]

Recurrent Extension of DACAL for Video Enhancement

Perframe-DACAL

Recurrent-DACAL

Perframe-DACAL

Recurrent-DACAL (fine-tuned on Retouched&DSLR images)

Perframe-DACAL

Recurrent-DACAL

Perframe-DACAL

Recurrent-DACAL

Conclusion

- Sliced Wasserstein distance
 - Lower sample complexity
 - Lower projection complexity
- Sliced Wasserstein generative models for image & video generation
 - AE-based generative models
 - Penalization free on latent variables
 - Trained easier
 - GAN models
 - Easier dual form approximation
 - Reach state-of-the-art
- Divide-and-Conquer Adversarial Learning models for image & video enhancement
 - Hierachical decomposition of complexity
 - Adaptive sliced Wasserstein distance learning

