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Hints for Real or Fake?

Images from https://medium.com/@kcimc/how-to-recognize-fake-ai-generated-images-4d1f6f9a2842

Text is uninterpretable Background is surreal Asymmetry

Weird teeth Messy hair Non-stereotypical gender
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Before or After?
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From KL and JS Divergence to Wasserstein Distance
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low dimensional manifolds in high 
dimension space hardly have overlaps



Wasserstein Distance – High Sample Complexity
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Divide and Conquer



Sliced Wasserstein Distance – 1D case
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 Optimal map (closed form, increasing arrangement): τ(𝑥) = 𝐹ொ
ିଵ ∘ 𝐹(𝑥), where 𝐹, 𝐹ொ is 

the corresponding cumulative distribution functions (CDFs)



Sliced Wasserstein Distance – High Projection Complexity
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Infinitely many random unit projections
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Unit projection for 
radon transform



Proposed Sliced Wasserstein Distance

 Learnable orthogonal projections for 
Radon Transform ఏ

் in a deep 
learning manner 
 Orthogonal projections vs. unit projections

 More efficient to cover entire space

 Trainable net weights vs. random weights
 More compact 
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Proposed Sliced Wasserstein Distance

 Learnable orthogonal projections for 
Radon Transform ఏ
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 1D PDF estimation using soft histogram 
assignment
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to the 𝑖-th bin, where 𝑐 are the 𝑖 -

th bin center

 (Inverse) 1D CDF estimation using linear 
interpolation
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Proposed Sliced Wasserstein Distance
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 Dual form (non-linearity ):
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Proposed Sliced Wasserstein Distance

 Learnable orthogonal projections for 
Radon Transform ఏ
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 Dual form (non-linearity ):

 Network training: updating orthogonal 
weights on Stiefel manifolds
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How AE based generative models work?

 Reconstruction with penalization on latent variables
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Images from Namju Kim

14. March 2016

+KL regularizer



Proposed Sliced Wasserstein Auto-Encoder (SWAE)
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How Generative Adversarial Nets (GANs) work?

 Two-player game (min-max objective function)


ீ 
௫∼ೌೌ(௫) ௫∼(௭)
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Images from Namju Kim

14. March 2016



Proposed Sliced Wasserstein Generative Adversarial Nets (SWGAN)
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Frechet Inception

Distance (FID)
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PG-WGAN

7.5
PG-SWGAN

5.5

Frechet Inception

Distance (FID)

AMT 
Preference

PG-WGAN 0.45

PG-SWGAN 0.55



Progressive Growing Technique for Video Generation

25
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Frechet Inception

Distance (FID) 

AMT 
Preference

PG-WGAN 0.46

PG-SWGAN 0.54



Mixed-Perception Issue for Image Enhancement

26

Color Adjustment

Illumination Enhancement

Texture Sharpening
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Divide and Conquer
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High-resolution Issue for Image Enhancement

Downscaling
(low-res, noisy, 

blurry)

Patch-wise Enhancement
(spatial inconsistency)

Multi-scale Photo 
Enhancement (MUSPE)

Input
Deep Photo
Ehancer (DPE) 
[Chen et al in 
CVPR’18] Weakly Supervised Photo

Enhancer (WESPE) [our work
in CVPR‘18 workshop

Our current work

31
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Multi-scale Extension of DACAL for Image Enhancement

(b) high-scale discriminator 𝐶

low-scale discriminator 𝐶
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(a) high-scale enhancer 𝐸

low-scale enhancer 𝐸

H × W
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2
×
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2

Input/output Conv+ReLU+BN ConcatResizePooling/OrthoProj
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Input WESPE [Ignatov, CVPRW’18]

DPE [Chen, CVPR’18] Proposed MUSPE [ICLR’20 submission]



13. June 2019 38

Input WESPE [Ignatov, CVPRW’18]

DPE [Chen, CVPR’18] Proposed MUSPE [ICLR’20 submission]
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Input WESPE [Ignatov, CVPRW’18] DPE [Chen, CVPR’18] Proposed MUSPE
[ICLR’20 submission]
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Recurrent Extension of DACAL for Video Enhancement
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Perframe-DACAL

Recurrent-DACAL
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Perframe-DACAL

Recurrent-DACAL (fine-tuned on Retouched&DSLR images)
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Perframe-DACAL

Recurrent-DACAL
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Perframe-DACAL

Recurrent-DACAL



Conclusion

 Sliced Wasserstein distance
 Lower sample complexity

 Lower projection complexity

 Sliced Wasserstein generative models for image & video generation
 AE-based generative models

 Penalization free on latent variables

 Trained easier

 GAN models
 Easier dual form approximation

 Reach state-of-the-art

 Divide-and-Conquer Adversarial Learning models for image & video enhancement
 Hierachical decomposition of complexity

 Adaptive sliced Wasserstein distance learning
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