
Trilevel Neural Architecture Search for Efficient Single Image Super-Resolution
(Supplementary Matrial)

Yan Wu1, Zhiwu Huang2, Suryansh Kumar1, Rhea Sanjay Sukthanker1, Radu Timofte1,3, Luc Van Gool1,4

1 ETH Zürich, Switzerland 2 SMU, Singapore 3 JMU, Germany 4 KU Leuven, Belgium
wuyan@student.ethz.ch, zwhuang@smu.edu.sg rhea.sukthanker@inf.ethz.ch,

{sukumar, radu.timofte, vangool}@vision.ee.ethz.ch

Abstract

In the supplementary material, we first provide a detailed
description of the proposed trilevel SISR NAS algorithm’s
coding implementation as outlined in the main paper with
the coding platform details, such as hardware and software
used in our implementation. Further, detailed information
on the optimal architecture obtained after trilevel optimiza-
tion is tabulated. Finally, we supply more experimental re-
sults on Set5 [1], Set14 [6], and DIV2K [4] valid sets as
well as some ablation study, showing our approach’s clear
superiority over state-of-the-art methods.

1. Implementation Details
Our approach is implemented in Python 3.6 with Pytorch

1.3.1 library. The complete search process takes 8 GPU
days on a single NVIDIA Tesla V100 (16GB RAM), and
the training of a PSNR-oriented and visualization-oriented
SR model takes 0.5 and 1.5 GPU days, respectively.

Algorithm 1 presents the pseudocode of our TrilevelNAS
SISR algorithm implementation. It mainly consists of two
stages, Search and Train from search, and the following
paragraphs further describe the details about these steps re-
spectively for both the visualization-oriented SR model and
PSNR-oriented SR model.

The proposed NAS optimization algorithm contains
three steps: search, model discretization and train from
scratch. Due to the sparsity property of sparsestmax, we
suggest Train from Search without the need for discretiza-
tion step, which reduces the model discrepancy between su-
pernet and the discretized architecture.
• Search: We follow AGD1 [2] to apply the same strat-
egy as follows. The search process comprises two phases: a
pre-train phase and a search phase. The pre-train phase uses

1We follow AGD [2] to use the same computational constraint (i.e.,
FLOPS-based one) that has been well-studied, and apply the single run to
conduct the evaluations.

half of the training data to update the network weights for
100 epochs with only content loss Lc. The search phase
alternately updates the network weights and architecture
weights for 100 epochs on two equally split training data.
The PSNR-oriented model search is optimized with the con-
tent loss Lc, and the visualization-oriented model search
is tuned with the perceptual loss for better visual quality.
We implement our search phase using DIV2K and Flickr2K
datasets [4].

(a) Visualization-oriented: Here, we took the visualization-
oriented ESRGAN model as a teacher model for the SR
model search task. Subsequently, we perform the search
task in two phases: (i) Pretrain: using half of the training
data, we optimize the content loss Lc and train the supernet
weights without updating architecture parameters. We train
for 100 epochs using Adam optimizer, and at each optimiza-
tion step, 3 patches of size 32×32 are randomly cropped.
For architecture parameters, we use a constant learning rate
3× 10−4, and for network weights, we set the initial learn-
ing rate as 1×10−4, decayed by 0.5 at 25th, 50th, 75th epoch.
(ii) Search: Optimizing content loss Lc and perceptual loss
Lp, we alternatively update the network weights and archi-
tecture weights for 100 epochs on two equally split training
data. The optimizer follows the same setting as in the pre-
train phase.

(b) PSNR-oriented: For this, we took the PSNR-oriented
ESRGAN model as teacher model for SR model search and
followed the similar procedure i.e., Pretrain and Search,
and however, here we optimize only the content loss Lc in
the two phases.

• Train from search. As we do not need a model dis-
cretization step with a completely converged supernet af-
ter the search process, we can inherit the pre-trained net-
work weights from the search stage as a good network
initialization and continue to train the converged architec-
ture. Following the same training process [2], we train the
PSNR-oriented SR model with the content loss Lc for 900
epochs. For the visualization-oriented SR model, we con-



Algorithm 1 The Proposed TrileveNAS SISR Algorithm

1: Input: dataset χ = {xi}Ni=1, pretrained generator G0, search
space and supernet G, epochs to pretrain (T1), search (T2) and
train-from-scratch (T3)

2: Output: trained efficient generator G∗

3: Equally split χ into χ1 and χ2 and initialize supernet weight w
and architecture parameters {α, β, γ} with uniform distribution

4: # First Step: Pretrain
5: for t← 1 to T1 do
6: Get a batch of data X1 from χ1

7: for γ in [γmax, γmin, γrandom1, γrandom2] do
8: g

(t)
w = ∇wd(G(X1, α, β, γ), G0(X1))

9: w(t+1) = update(w(t), g(t)w )
10: end for
11: end for
12: # Second Step: Search
13: for t← 1 to T2 do
14: Get a batch of data X1 from χ1

15: g
(t)
w = ∇wd(G(X1, α, β, γ), G0(X1))

16: w(t+1) = update(w(t), g(t)w )
17: Get a batch of data X2 from χ2

18: g
(t)
α = ∇αd(G(X2, α, β, γ), G0(X2)) + λω1∇αF (α|β, γ)

19: g
(t)
β = ∇αd(G(X2, α, β, γ), G0(X2)) + λω1∇βF (β|α, γ)

20: g
(t)
γ = ∇γd(G(X2, α, β, γ), G0(X2)) + λω2∇γF (γ|α, β)

21: α(t+1) = update(α(t), g(t)α )
22: β(t+1) = update(β(t), g(t)β )

23: γ(t+1) = update(γ(t), g(t)γ )
24: end for
25: #Third Step: Train from search
26: Derive the searched architecture G∗ with maximal {α, β, γ} for

each layer and inherit weight w.
27: for t← 1 to T3 do
28: Get a batch of data X from χ
29: g

(t)
w = ∇wd(G

∗(X), G0(X))

30: w(t+1) = update(w(t), g(t)w )
31: end for

tinue to finetune for 1800 epochs with a perceptual loss Lp.
We inherit the weights from the derived supernet and train
with DIV2K and Flickr2K datasets [4] at the training phase.
Patches of size 32×32 are randomly cropped, and the batch
size is set to 16.

(a) Visualization-oriented: SR model training is conducted
in two steps: (i) Pretrain by minimizing content loss Lc for
900 epochs. Adam optimizer is used with initial learning
rate 1×10−4 and learning rate decays by 0.5 at 225th, 450th,
675th epoch. (ii) Fine-tune with perceptual loss Lp for 1800
epochs. We also train using Adam optimizer with initial
learning rate 1×10−4, decayed by 0.5 at 225th, 450th, 900th,
1350th epoch.

(b) PSNR-oriented: SR model is trained by minimizing
the content loss Lc for 900 epochs, and the optimizer fol-
lows the same setting as the pretrain phase in visualization-
oriented model training. Note that, for the challenge setup,
we only train our proposed model with DIV2K (without us-
ing extra data), and merely use a teacher for data distillation

instead of using the ground truths for strong supervision.
This might lead to marginally inferior performance, but it is
closer to real-world scenarios that generally lacks of ground
truths. We first crop LR images in DIV2K into sub-images
of size 120 × 120. We use Adam to train for 300 epochs,
where the learning rate decays by 0.5 at 75th, 150th, 225th

epoch.

2. Architecture Details

Table 1-4 present our derived network-level (path), cell-
level (5 searchable operations in each RiR block) and
kernel-level (output channel number) architectures. Table
1-2 demonstrate the SR architecture models obtained us-
ing visualization-oriented search strategy on DIV2K and
Flick2K datasets. Table 3-4 provide the SR architectures
obtained by our proposed method using PSNR-oriented
search strategy.

The obtained network-level path is shown in first row
of the respective table. The entry ‘0’ and ‘1’ in the path-
index row-vector indicates RiR block and upsampling/con-
volution layer respectively. In addition, we lists the cell-
level structures (i.e., the selection of operations in OP1-OP5
in each RiR block) and the kernel-level structures (i.e., the
selection of output channels from the full 64 channels) in
Table 3-4. For each OP, the format (A,B) indicates select-
ing the operation A with its kernel width being B. Regard-
ing the types of different OPs, DwsBlock, ResBlock, Conv
symbolises depthwise convolution block, residual block and
convolution block respectively.

3. More Experimental Results

PSNR Oriented Result. We implemented the PSNR-
oriented SR model search on DIV2K and Flickr2K datasets
and used the PSNR-oriented ESRGAN model as our teacher
model. We have observed a clear FLOPs advantage of our
new backbone (TrilevelNAS-B) over the original backbone
(TrilevelNAS-A) in previous experiments. Here, we focus
on the Trilevel search on our new backbone and aim for a
more efficient SR model. We compare our derived model
against our competitors in Table 5. With comparable per-
formance, the derived PSNR-oriented SR model on the new
backbone prunes a convolution layer, and it is clearly better
in terms of FLOPS and parameter size than the competitors.

Further, we compared our model with the winner and
runner-up of the recent AIM challenge [7]. Following the
challenge setup, we train and validate our model with 800
DIV2K training images and 100 valid images respectively.
Table 6 provides the quantitative results of our method
with competing methods, which include challenge win-
ner (NJU MCG), runner-up (AiriA CG), and NAS-based
SR models. It can be inferred from the statistics that our
method, despite being significantly lighter, gives PSNR



Path [0, 0, 0, 1, 0, 1]
RiR Block ID OP1 OP2 OP3 OP4 OP5

0 (Conv 1× 1, 64) (Conv 3× 3, 24) (Conv 1× 1, 24) (Conv 1× 1, 24) (Conv 3× 3, 64)
1 (DwsBlock, 32) (DwsBlock, 32) (DwsBlock, 64) (Conv 3× 3, 24) (ResBlock, 64)
2 (Conv 1× 1, 64) (Conv 1× 1, 64) (Conv 3× 3, 40) (Conv 1× 1, 32) (DwsBlock, 64)
3 (Conv 3× 3, 24) (Conv 3× 3, 64) (Conv 1× 1, 32) (Conv 3× 3, 32) (Conv 3× 3, 64)

Table 1. Visualization-oriented SR model architecture searched on DIV2K and Flickr2K dataset [4] with original AGD
backbone (TrilevelNAS-A). We present the network-level architecture (i.e., path of stacking RiR blocks and upsampling
layers), the cell-level structures (i.e., the selection of operations in OP1-OP5 in each RiR block) and the kernel-level structures
(i.e., the selection of output channels from the full 64 channels). In the path, ’0’ indicates a RiR block and the ’1’ indicates
an upsamling layer. For each OP, the format (A,B) indicates selecting the operation A with its kernel width being B.

Path [0, 0, 0]
RiR Block ID OP1 OP2 OP3 OP4 OP5

0 (DwsBlock, 32) (Conv 1× 1, 32) (DwsBlock, 24) (DwsBlock, 40) (DwsBlock, 64)
1 (DwsBlock, 24) (Conv 1× 1, 56) (Conv 3× 3, 24) (DwsBlock, 24) (Conv 3× 3, 64)
2 (ResBlock, 64) (Conv 1× 1, 24) (Conv 1× 1, 24) (Conv 1× 1, 24) (Conv 1× 1, 64)

Table 2. Visualization-oriented SR model architecture searched on DIV2K and Flickr2K dataset [4] with our proposed new
backbone (TrilevelNAS-B). We present the network-level architecture (i.e., path of stacking RiR blocks and convolutional
layers), the cell-level structures (i.e., the selection of operations in OP1-OP5 in each RiR block) and the kernel-level structures
(i.e., the selection of output channels from the full 64 channels). In the path, ’0’ indicates a RiR block and the ’1’ indicates a
convolutional layer. For each OP, the format (A,B) indicates selecting the operation A with its kernel width being B.

Path [0, 0, 0, 0, 0, 1]
RiR Block ID OP1 OP2 OP3 OP4 OP5

0 (Conv 1× 1, 32) (Conv 1× 1, 24) (DwsBlock, 64) (DwsBlock, 24) (Conv 1× 1, 64)
1 (DwsBlock, 32) (ResBlock, 40) (DwsBlock, 56) (Conv 3× 3, 40) (Conv 3× 3, 64)
2 (Conv 3× 3, 64) (Conv 1× 1, 64) (Conv 3× 3, 24) (Conv 1× 1, 32) (DwsBlock, 64)
3 (DwsBlock, 64) (DwsBlock, 56) (Conv 3× 3, 24) (Conv 3× 3, 24) (DwsBlock, 64)
4 (DwsBlock, 32) (Conv 3× 3, 64) (Conv 3× 3, 64) (Conv 3× 3, 24) (Conv 3× 3, 64)

Table 3. PSNR-oriented SR model architecture searched on DIV2K and Flickr2K [4] with our new backbone (TrilevelNAS-
B). We present the network-level architecture (i.e., path of stacking RiR blocks and convolutional layers), the cell-level
structures (i.e., the selection of operations in OP1-OP5 in each RiR block) and the kernel-level structures (i.e., the selection
of output channels from the full 64 channels). In the path, ’0’ indicates a RiR block and the ’1’ indicates a convolutional
layer. For each OP, the format (A,B) indicates selecting the operation A with its kernel width being B.

Path [0, 0, 1, 1]
RiR Block ID OP1 OP2 OP3 OP4 OP5

0 (Conv 1× 1, 40) (Conv 1× 1, 24) (Conv 1× 1, 56) (ResBlock, 56) (Conv 1× 1, 64)
1 (DwsBlock, 64) (DwsBlock, 56) (Conv 3× 3, 32) (Conv 3× 3, 24) (Conv 1× 1, 64)

Table 4. PSNR-oriented SR model architecture searched on DIV2K and Flickr2K [4] with our proposed TrilevelNAS-B on
AIM challenge [7]. We present the network-level structures (i.e., path of stacking RiR blocks and convolutional layers),
the cell-level structures (i.e., the selection of operations in OP1-OP5 in each RiR block) and the kernel-level structure (i.e.,
the selection of output channels from the full 64 channels). In the path, ’0’ indicates a RiR block and the ’1’ indicates a
convolutional layer. For each OP, the format (A,B) indicates selecting the operation A with its kernel width being B.



Method Path Params GFLOPS PSNR Type(M) 256×256 Set5 Set14

ESRGAN [5] - 16.70 1176.6 32.70 28.95 Manual

HNAS+ Up: 9th layer 1.69 330.7 31.94 28.41 Bi-level NAS
AGD [2]‡ [0,0,0,0,0,1,1]∗ 0.90 140.2 31.85 28.40 Bi-level NAS

AGD-AutoDeepLab† [0,0,0,1,0,0,1] 0.71 165.8 31.83 28.38 Tri-level NAS

TrilevelNAS-B [0, 0, 0, 0, 0, 1] 0.51 33.3 31.62 28.26 Tri-level NAS

Table 5. Quantitative results of PSNR-oriented SR models with scaling
factor 4. The listed Paths use ‘0’ to indicate a RiR block, and ‘1’ to denote
a UpConv layer. The following symbols indicate: + Reproduced HNAS
for PSNR-oriented ×4 SR tasks; ‡ Reproduced with AGD official setup
and implementation; † Transferred from the visualization-oriented model;
∗ Fixed path. Clearly, our method performs better with all the evaluation
metrics combined.

Method Params GFLOPS PSNR Extra Ground
(M) [Val] Data Truth

NJU MCG 0.43 27.10 29.04 ✓ ✓
AiriA CG 0.687 44.98 29.00 ✓ ✓

HNAS [3] 1.69 330.74 28.86 × ×
AGD [2] 0.45 110.9 28.66 × ×

AGD-AutoDeepLab 0.71 165.8 28.83 × ×

TrilevelNAS-B 0.27 17.33 28.52 × ×

Table 6. Quantitative results on AIM 2020 Challenge dataset.

Method Path Params GFLOPS PSNR
(M) Set5 Set14

Softmax [0,0,1,0,1] 0.47 154.80 30.34 27.28
Sparsestmax [0,0,0,1,0,1] 0.34 117.39 30.34 27.29

Table 7. Quantitative results comparison of visualization-oriented SR
models searched using softmax and sparsestmax supernet.

λ Path Params GFLOPS PSNR
(M) Set5 Set14

0 [0,0,1,0,0,0,1] 0.58 184.08 30.32 27.21
0.01 [0,0,1,0,0,1] 0.52 169.69 30.34 27.20
0.1 [0,0,0,1,0,1] 0.34 117.39 30.34 27.29

Table 8. Quantitative results of visualization-oriented SR models with
scaling factor 4 for different ordering constraint strengths. In the listed
Path, ‘0’ indicate a RiR block and ‘1’ a UpConv layer.

value comparable to competing approaches.
Note that the winner and runup methods are both trained

with extra Flickr2K dataset and take ground-truth HR im-
ages for strong supervision, which can be unrealistic for
real-world application. Consequently, we adhere to use a
teacher model for knowledge distillation. For that, we fol-
low AGD, using the pretrained ESRGAN generator for the
supervision. We can infer from Table 6 that TrilevelNAS
being much lighter gives comparable results to the winning
methods, which is desirable for mobile devices.
Ablation Study. Below studies the priority of the suggested
use of sparsestmax, sorted sparsestmax, trilevel NAS, and
train from search scheme against their direct competitors.
(a) Softmax vs. Sparsestmax We study the supernet op-
timization with softmax and sparsestmax combination, re-
spectively, keeping the same ordering constraint strategy.
From Table 7, we can observe that with weight ordering
constraints, softmax and sparsestmax can prune one or two
RiR blocks and have comparable performance in PSNR.
However, sparsestmax converges to a more efficient model
with a smaller model size and less flops consumption.

Method Path Params GFLOPS PSNR
(M) Set5 Set14

BilevelNAS [0,0,0,0,0,1,1]∗ 0.52 115.39 30.32 27.22
TrilevelNAS [0,0,0,1,0,1] 0.34 117.39 30.34 27.29

Table 9. Quantitative results comparison of BilevelNAS (kernel- and cell-
level) and TrilevelNAS (kernel-, cell- and network-level). Here ∗ indicates
that the path is fixed rather than being searched.

(b) Sorted Sparsestmax The proposed sorted sparsestmax
approach allow for a shallow and efficient SR model with-
out much loss in performance. In Eq. 2 of the main paper, λ
controls the trade-off between the major constraint and the
ordering constraint. A large ordering constraint leads to a
shallow network. We set λ as 0, 0.01, 0.1, respectively, and
examine its effects. Table 8 shows the derived paths and
the corresponding model performance. We see that without
a weight ordering constraint (λ = 0), TrellisNAS prefers
a full network path with 5 RiR blocks and 2 upsampling
blocks. When we impose ordering constraint with λ=0.01,
0.1, the tail RiR block is seen to be pruned, which yields
more efficient SR models with small model size and FLOPs
without loss in performance.
(c) Bilevel vs. Trilevel NAS To show the necessity and ad-
vantage of introducing our network-level search in addition
to cell- and kernel-level search, we compare the Bilevel-
NAS, which has a fixed network-level design (i.e., path: [0,
0, 0, 0, 0, 1, 1]) with our TrilevelNAS. For BilevelNAS, we
use AGD [2], and for a fair comparison, we replace the orig-
inal softmax combination in AGD with sparsestmax combi-
nation. From Table 9, we can conclude that the additional
network-level search in TrilevelNAS enables us to derive a
lighter model with comparable performance. It can be in-
ferred from the Table 9 statistics that the number of param-
eters in our approach is significantly smaller as compared to
BilevelNAS, whereas the PSNR value is slightly better with
comparable GFLOPS on Set5 and Set14.
(d) Train from Scratch vs. Train from Search Lastly,
we study the effect of inheriting weights from the search
phase. Fig. 1 shows the valid PSNR evolution of training
from search and training from scratch, respectively. We can
observe a clear advantage of inheriting weights from the
search phase. With training from search strategy, we can
converge to a better PSNR performance in fewer epochs.

Valid PSNR Evolution

Valid PSNR Evolution

Epoch

PS
N

R

Figure 1. Train from Search vs Train from Scratch study.

Figure 2 shows the visual comparison of our approach
against other competing methods. The last two columns in
the figure show the results obtained using our TrilevelNAS



16.7 MB, 1176.6G 0.56 MB, 117.7G 0.71 MB, 165.8G 0.34 MB, 117.4G 0.24 MB, 15.4G

BicubicHR ESRGAN AGD AGD-AutoDeepLab TrilevelNAS-A TrilevelNAS-B

Figure 2. Visualization results of different SR models on Set5, Set14 and DIV2K valid set. Our TrilevelNAS-A and TrilevelNAS-B achieve
comparable visual quality with very light model.



algorithm with TrilevelNAS-A and TrilevelNAS-B back-
bone design, respectively. Clearly, our method supplies a
significantly lighter model and provides a super-resolved
image that is perceptually as good as, if not better, than
other approach results.

References
[1] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and

Marie-Line Alberi Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
In British Machine Vision Conference (BMVC), 2012.

[2] Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li,
Yingyan Lin, and Zhangyang Wang. Autogan-distiller:
Searching to compress generative adversarial networks. In
International Conference on Machine Learning, pages 3292–
3303. PMLR, 2020.

[3] Yong Guo, Yongsheng Luo, Zhenhao He, Jin Huang, and
Jian Chen. Hierarchical neural architecture search for sin-
gle image super-resolution. IEEE Signal Processing Letters,
27:1255–1259, 2020.

[4] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan
Yang, and Lei Zhang. Ntire 2017 challenge on single image
super-resolution: Methods and results. In Proceedings of the
IEEE conference on computer vision and pattern recognition
workshops, pages 114–125, 2017.

[5] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European conference on computer vision
(ECCV) workshops, pages 0–0, 2018.

[6] Roman Zeyde, Michael Elad, and Matan Protter. On single
image scale-up using sparse-representations. In International
conference on curves and surfaces, pages 711–730. Springer,
2010.

[7] Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, Jie
Liu, Jie Tang, Gangshan Wu, Yu Zhu, Xiangyu He, Wenjie
Xu, et al. Aim 2020 challenge on efficient super-resolution:
Methods and results. In European Conference on Computer
Vision, pages 5–40. Springer, 2020.


	. Implementation Details
	. Architecture Details
	. More Experimental Results

