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Continual Conceptual Entity Learning for
Text-to-Image Generative Models

Yabin Wang, Xiaopeng Hong Senior Member, IEEE, Zhiheng Ma Member, IEEE, Zhou Su Senior Member, IEEE,
Jinpeng Zhang, Zhiwu Huang

Abstract—Current Text-to-Image generative models struggle to
continuously learn multiple distinct entities or concepts, limiting
their scalability and hindering practical deployment in dynamic
environments. We formulate this task as Continual Conceptual
Entity Learning (CEL) and propose a novel framework called
Continual Entity Adapter Learning (CEAL). CEAL leverages
a compact set of tunable parameters, termed SuperLoRA, to
efficient and scalable learning of new entities. We propose
a dynamic rank-increasing strategy to train the SuperLoRA,
balancing computational efficiency with performance. To evaluate
our method, we create three benchmarks encompassing generic
objects, human faces, and artistic styles. Experimental results
demonstrate that CEAL effectively learns new entities while
preserving prior knowledge, outperforming existing methods in
both entity fidelity and parameter efficiency.

Index Terms—Continual learning, text-to-image synthesis, dif-
fusion models.

I. INTRODUCTION

Recently, Text-to-Image (T2I) generative models, such as
GLIDE [1], DALL-E [2], and Stable Diffusion (SD) [3],
have achieved remarkable success in generating diverse and
complex images based on textual descriptions with high fi-
delity. However, they often struggle to generate styles, objects,
or characters that fall outside the scope of their pre-trained
datasets. For instance, while current T2I models are experts at
generating images such as “a dog on the moon,” they cannot
create images such as “our pet dog Buddy on the moon”
without being trained on Buddy’s images during the pre-
training phase. Thus, personalizing pre-trained T2I models for
new user-provided concepts (e.g., styles [4], [S], objects [6],
[7], or characters [8]]) is increasingly in demand and has
emerged as a research hotspot.

To bridge this gap, we introduce the task of Continual
Conceptual Entity Learning (CEL). CEL involves sequentially
integrating new conceptual entities (e.g., specific objects, per-
sons, or styles) into existing T2I models in an ongoing manner
over time, crucially, without extensive retraining on previ-
ous data. Unlike previous continual learning approaches for
generative models [9]-[14] focused on class-level generation
or single-session multi-concept customization methods (e.g.,
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Fig. 1: In CEL, the model sequentially learns new entities (e.g.,
pets named ‘Whiskers’ or ‘Buddy’) from limited samples in
each learning session. After learning, the T2I generator can
generate images of both newly learned and previously known
entities based on text prompts.

[33]) that learn multiple concepts simultaneously, CEL empha-
sizes entity-level sequential learning. The model must capture
and reproduce individual entities’ unique characteristics and
details (see Fig. [I). The primary challenges of CEL stem
from three core requirements: (1) sequentially learning new,
distinct entities effectively from limited data, (2) mitigating
catastrophic forgetting of previously acquired entities, and
(3) achieving this in a parameter-efficient manner to ensure
scalability.

Existing approaches [6f], [7] for T2I personalization are
mainly designed for single-stage incremental learning and
are not well-suited for the continuous, sequential learning of
multiple new entities over time. When multiple new entities
are continually introduced, these existing methods struggle to
maintain both newly learned and previously acquired knowl-
edge, leading to catastrophic forgetting. Recently, Low-Rank
Adaptation (LoRA) [15], [16] has emerged as an efficient
method for fine-tuning T2I models using low-rank adapters,
allowing for scalable learning of numerous entities with small
parameter expansion. However, the storage requirements for
new entities remain a significant challenge, particularly in
resource-constrained environments. Additionally, our findings
indicate that directly merging multiple LoRA weights can
result in conflicts, preventing the generation of high-quality
outputs of new concepts.

To overcome these challenges, we propose a novel frame-
work, termed Continual Entity Adapter Learning (CEAL), for
CEL. Grounded in the theoretical understanding of parameter
adaptation and network function, CEAL proactively searches
for a layer-wise LoRA allocation for each entity that can
be integrated with minimal conflict, thereby ensuring entity
fidelity, knowledge preservation, and generalization ability.

CEAL’s design is grounded in the following theoretical
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principles and empirical observations: First, following the
principle of Functional Localisation observed in deep learning
models [17], diffusion models feature functionally distinct
layers, each specializing in specific image generation aspects
such as content, style, or color attributes [[18]], [19]. This Layer-
wise Functional Specialization thus requires optimized, layer-
specific LoRA configurations and provides the theoretical
grounding for strategically allocating these parameters with
varying ranks to mitigate interference. Second, the foundation

of LoRA relies on the Intrinsic Dimension Hypothesis [20],

suggesting adaptation lies in a low-dimensional subspace. Fur-

thermore, consistent with the Lottery Ticket Hypothesis [21]],

which implies sparse weight updates can be sufficient, LoORA

weights typically exhibit high sparsity. This means inter-
entity conflicts are largely confined to a small parameter
subset, thus leaving ample room to integrate new knowledge
with minimal interference. Third, LoRA modules typically
lack orthogonality, and their naive merging often leads to
destructive interference from conflicting entity information.
Thus, CEAL allocates LoRAs with varying ranks to each
layer instead of using a uniform rank. To implement this, we
introduce a new structure called Superlora, a rank-degradable

LoRA architecture viewed as a combination of multiple low-

rank LoRAs, which enables weight-sharing. We train Super-

lora for each entity and search for the optimal configuration
based on multiple criteria. The optimized LoRA weights are
then merged into the base model, allowing for the generation
of new entities without increasing the overall parameter count.

The training quality of Superlora directly affects the search
results. Since exhaustively training all possible LoRA config-
urations is computationally infeasible, an efficient strategy is
crucial to explore the vast configuration space effectively. We
introduce a dynamic rank-increasing strategy that gradually
expands the search space by introducing new rank parameters
alongside the training steps. This approach allows Superlora
to initially focus on learning essential low-rank configura-
tions before progressively exploring more complex, higher-
rank configurations. After training Superlora for a new entity,
an optimizer explores Superlora using multiple criteria to
determine the optimal LoRA rank configuration for that entity.

To facilitate standardized evaluation of methods addressing
the unique challenges of CEL, we construct three bench-
marks that encapsulate a range of different concepts, including
generic objects, human faces, and distinctive artistic styles. In
addition, we design evaluation metrics for CEL that evaluate
the model’s performance on new tasks and its susceptibility
to forgetting in continuous learning. Extensive experiments
on three benchmarks demonstrate the effectiveness of CEAL.

Code and data will be publicly available.

The technical contributions are manifold:

o We propose a framework, CEAL, to continuously learn enti-
ties using a compact set of tunable parameters. To optimize
CEAL, we define three key CEL criteria that encompass
concept fidelity, parameter efficiency, and aesthetic quality.

e We propose a novel rank-degradable LoRA architecture
called Superlora. This architecture allows for weight-
sharing and dynamic allocation of LoRA ranks across
different layers, enabling efficient and scalable searching.

Our dynamic rank-increasing strategy further stabilizes the
training process, ensuring effective learning of new entities.

o We establish three benchmarks for CEL. Each benchmark
focuses on different aspects of the task, allowing for com-
prehensive evaluation.

II. RELATED WORKS
A. Text-to-image Personalization

Text-to-image (T2I) generation models [1]], [22]-[31]] have
received unprecedented interest from the community in recent
years. To achieve text-to-image generation, these models typ-
ically first employ a language encoder, such as CLIP [32],
to encode user text input into a latent representation. This
latent representation then serves as a conditional input, with
the model subsequently trained on large-scale paired image-
text datasets to generate corresponding images.

With the rapid advance of T2I models, their personalization
(a.k.a. customization) is becoming increasingly crucial. Per-
sonalization methods [33]]-[35] tailor a model to the specific
needs of an individual or group by utilizing data unique to the
intended users. DreamBooth [6] fine-tunes all parameters of
the diffusion network by just giving a few images of the target
entity. DreamBooth uses the pre-trained model to generate
regularization data about similar concepts to relieve forgetting.
However, tuning all parameters on few-shot images would
increase the risk of the model forgetting previously learned
knowledge and overfitting. Textural Inversion [[7] proposes a
concise way for customization by solely optimizing a set of
word embeddings to portray a novel concept while leaving the
denoising model fixed. Although it effectively preserves the
original model’s knowledge, it may have restricted learning
capability and may encounter difficulty in comprehending in-
tricate entities. Cones [19] identifies and manipulates concept
neurons within diffusion models to enable efficient and cus-
tomizable multi-subject image generation. InstantBooth [36]]
captures subject identity by representing the general concept
as a textual embedding and feeding fine-grained visual details
through lightweight adapter layers into the frozen model.
HyperDreamBooth [37] uses a HyperNetwork to generate
compact, personalized weights from a single image, enabling
extremely fast personalization of T2I models. Custom Dif-
fusion (CD) [38|] combines these two strategies for multi-
concept learning. CD learns a set of textual embeddings for
a given concept and fixes the parameters of the text encoder,
only fine-tuning a small subset of parameters in the cross-
attention layers of the denoising model, specifically the key
and value matrices. Concept Weaver [39]], building upon CD,
then addresses how to effectively fuse the visual features
of these multiple distinct concepts into a single image at
inference time. It first generates a template image aligned
with the text prompt, then utilizes spatial region masks to
inject the visual appearances of multiple customized concepts
into their respective regions. Similarly, ED-LoRA [40]] merges
multiple LoRAs into a single model using Gradient Fusion
and employs Regionally Controllable Sampling to accurately
place the customized concepts and their attributes in im-
ages. LoRA-Composer [41] is a training-free method that
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leverages the cross-attention mechanism to inject concept-
specific LoRA features into image regions designated by user-
provided layout conditions. MC2 [42] enables training-free
composition of heterogeneous single-concept models (LoRA
or TI) using inference-time optimization. Its Multi-concept
Guidance (MCQG) refines attention weights to spatially disen-
tangle concepts and ensure their faithful representation while
minimizing interference. However, these works primarily fo-
cus on composing multiple pre-existing customized concepts.
The CEL task, in stark contrast, centers on the continual,
sequential learning of new entities and the critical mitigation
of catastrophic forgetting.

Recent works [16] adopt parameter-efficient fine-tuning
methods, such as LoRA [15]], to learn new entities without tun-
ing the entire denoising network. Building upon the parameter
efficiency of LoRA, some works [43[]-[45]] focus on optimiz-
ing the allocation of trainable parameters under the constraint
of limited storage resources. DyLoRA [43] trains LoRA with a
range of ranks, enabling dynamic adjustment of model capac-
ity without retraining. AdaLoRA [44] adaptively allocates the
parameter budget among different weight matrices based on
their importance scores. IncreLoRA [45] incrementally adds
trainable parameters during training. However, while these
methods enhance LoRA’s parameter efficiency, they are not
tailored for the CEL task. They typically lack a proactive
mechanism to automatically determine optimal, layer-wise
LoRA configurations that minimize inter-entity conflict during
sequential learning, thus often requiring users to define these
specific CEL-focused setups. Moreover, stand-alone addition
of each new concept brings substantial modifications to the
model parameters, leading to an inevitable rise in storage
burden and knowledge forgetting.

B. Continual Learning

Continual learning is a machine learning paradigm that
learns new data over time without forgetting previously learned
knowledge. Three primary strategies are used to address the
challenge of catastrophic forgetting. Rehearsal methods allow
a model to partially access and utilize data from previous
sessions when learning new tasks. Previous data can be
obtained by storing samples from past tasks [46]-[56] or
synthesizing through generative models [9], [57]-[60]. Regu-
larization methods [48]], [61[]-[68] use the knowledge from the
old model to guide and constrain the learning process for new
tasks, by techniques such as knowledge distillation. Network
Expansion methods [[69]—[73]] augment the model’s parame-
ters to incorporate new knowledge without interfering with
previous parameters, using methods like network expanding-
pruning [74] and Neural Architecture Search (NAS) [75],
[76]. Recently, parameter efficient tuning, such as prompt-
tuning [77]-[80] and adapter [81], shows a promising way
for continual learning on pre-trained models. However, most
studies focus only on a class-level continual learning scenario,
where the class serves as the learning unit. Consequently, they
cannot be directly applied to the CEL scenario, where the
learning unit is the entity rather than the class. Recently, C-
LoRA [81], [82] introduces the use of LoRA to learn each

entity for T2I diffusion models. However, C-LoRA stores all
LoRA parameters in memory, which becomes problematic
when dealing with a large number of entities.

III. METHODS
A. Preliminary and Problem Formulation

Preliminary for T2I Diffusion Models: To achieve high-
quality and creative image generation, T2I diffusion mod-
els 3], [83]], [84] have become a hot topic of current research.
T2I diffusion models are multimodal generators that learn
precise correspondences between textual descriptions and im-
ages. Based on these learned correspondences, trained models
generate images aligned with given textual prompts through a
progressive denoising process. Given a diffusion model 6, the
training objective can be derived as Eq. [I}

Eto.c.c [le = oG, C.HI] ()

where € ~ N(0,1) is a random noise, X is the original clean
image, x; corresponds to the noised image at the ¢-th timestep,
and C is the text embeddings as condition.

Problem Formulation: In CEL, we continually insert knowl-
edge of new entities into a pre-trained T2I diffusion model
by reducing the reconstruction loss |I} An entity refers to any
conceptual or physical item, such as an object, character, or
artistic style.

Formally, the model learns sequentially over S sessions,
where each session introduces a new entity. In the session s,
the T2I model 0 encounters new data D, = {(z7,¢})|i € N°}
of a specific entity v. Here, N° represents the number of train-
ing samples. ¢ denotes the textual description corresponding
to the image x;. It follows a structured template like “a photo
of id,” where id is the identifier for the newly introduced
entity. Once trained, we can use id in text prompts and the
model 0 to create the desired images. This process is repeated
until all S entities are learned. 6 is expected to have the
capability to generate images containing any combination of
the learned S entities, as shown in Fig. f

B. Empirical Analysis of LoRA

LoRA [15] is an effective approach for fine-tuning the
denoising model to incorporate new entities. Unlike traditional
fine-tuning, LoRA introduces compact, low-rank matrices to
adapt existing pre-trained weights. Only these new matrices
are updated during training, keeping the original model pa-
rameters frozen. Formally, given a pre-trained T2I model 6,
the weights of the [*" layer is W' € R™*™  where n; and
m; represent the input and output dimensions of the I*" layer,
respectively. The calculation of low-rank adaptation applied to
W' can be expressed as Eq

Wh=w!+ AL (BT 2

where AL € R™*" and Bl € R™*" are the low-rank matrices
for the I*" layer and r represents the rank of LoRA.

To analyze the behavior of LoRA in personalizing T2I
models, we conduct a series of experiments focusing on the
entities ’dog’ and ’cat’ within our CEL benchmarks.
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(a) Performance of LoRA at different ranks

=1 /=2 =4 =8 =16 =32

16 [ Dog LoRA
14 | | Il Cat LoRA
M. =
W | | I |
wl I ml
s []
o [ | i em B I @ .
Wi m i i

il [ ) |

0

Ll
15 Layer

|
noo12 13 wu

(c) Layer-wise Cosine Similarity between LoRA of dog and cat

0175

LIl
ool ER mBR
el B n
wol B n
] B ] n
wo| MM _M . w_______ H=lHE

o 1 2z 3 4 5 & 7 & & 1w 1 1z 1 11 slLayer

Fig. 2: Analysis of LoRA in T2I model personalization.
(a) Performance of pruned LoRA models for ’dog’ and ’cat’
concepts at different ranks. (b) Layer-wise distribution of
LoRA update matrix AW. (c) Layer-wise cosine similarity
between ’dog’ and ’cat’ LoRA weights.

We train two independent LoRAs with a rank of r» = 32
for each entity. After training, we prune the trained LoRA
to certain ranks using SVD decomposition. Interestingly, as
illustrated in Fig. 2] (a), we can find that despite removing
half of the parameters, the LoRA models maintain their
capability to effectively generate the intended concepts. This
suggests the sparsity, where many components of the LoRA
weights have minimal contributions. This observation strongly
supports the Lottery Ticket Hypothesis in the context
of LoRA, implying that a sparse weight update is often
sufficient. Consequently, sacrificing some of these weights
may not significantly impair LoRA’s overall functionality.
Similar observations have been reported in related studies [83],
36]].

Then, we conduct a layer-wise analysis of the parameter
distribution in LoRA. As shown in Fig. [2] (b), we find that
a significant portion of the parameters AW in LoRA have
magnitudes very close to zero, indicating they have little
impact on the output of the pre-trained models. Moreover, the
weight distributions of LoRA vary across different entities,
suggesting that various entities need distinct parts of the
model. This observation implies that different layers within
diffusion models are not uniform in function. This provides
direct empirical evidence for the principle of Functional Lo-
calisation within diffusion models, aligning with findings
in related research [18]], [19]], and theoretically justifying our
strategy of allocating layer-specific ranks rather than a uniform
rank.

Finally, we computed the layer-wise cosine similarity dis-
tribution between the LoRA weights for dog’ and ’cat’, as

depicted in Fig. [2] (c). Despite a few layers exhibiting non-
zero cosine similarity, the majority of the layers demonstrate
values exceedingly close to zero, implying a high degree of
orthogonality. This observation suggests that directly merging
the two LoRA weights together might cause the knowledge to
overlap, potentially leading to less distinct representations.

C. Continual Entity Adapter Learning Framework

Based on the aforementioned theoretical principles and
empirical analysis, we identify several limitations of traditional
LoRA methods, including inefficient parameter usage and
challenges in merging knowledge. These drawbacks make
traditional LoRA unsuitable for CEL scenarios, where LoRA
must sequentially incorporate new entities while maintaining
parameter efficiency and ensuring seamless integration of
multiple adaptations.

To address these challenges, we propose the framework,
CEAL, to continuously and efficiently integrate a sequence
of new entities into a pre-trained T2I diffusion model, as
illustrated in Fig. 3]

The CEAL framework operates in two main stages. First, we
introduce Superlora, a novel structure designed to effectively
manage a wide spectrum of LoRA configurations within a
single adapter. Through a dynamic rank-increasing strategy,
Superlora is a flexible foundational adapter with adjustable
rank complexity. This core characteristic enables the direct
derivation of diverse sub-LoRA configurations, without the
need for retraining. This significantly simplifies the search for
optimal LoRA configurations across the extensive parameter
space.

Second, leveraging the trained Superlora, we search for
the optimal layer-wise rank allocation. This involves sampling
LoRA configurations, generating images, and evaluating them
against multi-objective criteria, specifically entity fidelity, pa-
rameter efficiency, and aesthetic quality, to identify compact
and high-performing LoRAs.

The resulting LoRA can then be seamlessly merged into the
base T2I model, providing a parameter-efficient and effective
solution for the continual integration of new entities.

D. Superlora Structure and Efficient Training Strategy

This section details the Superlora structure and the efficient
training strategies, specifically weight-sharing and dynamic
rank-increasing, designed to manage its vast configuration
space and enable its rank-degradable properties. To detail
the Superlora architecture, we first establish the following
definitions:

Definition 1: For a given layer [, a LoRA module attached to
the original weight matrix W' can be expressed as Eq

il 1 1 (pl\T
W =W"'+ A, (B,,)",

3)
where Al € R™*™ and B! € R™>" are the low-rank
matrices for the [*" layer with rank ;.

Definition 2: The Superlora structure, mathematically defined
as a set R, encompasses all possible combinations of LoRA

configurations across the network’s layers. It is defined as:
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Fig. 3: Overview of CEAL Framework. In a training stage, CEAL continually integrates new entities into a pre-trained
T2I diffusion model through a two-step optimization process, which consists of a prerequisite training process (left) with
a rank-degradable LoRA structure, Superlora, and a search and optimization process (right) to identify the optimal LoRA
configuration and optimize the parameter settings according to multiple objectives.

R = {(A.,,BL)|1=1,2,...,N} where N is the total

ri

number of la{yerslin the model.

Definition 3: A specific LoRA configuration within Superlora
is represented by a rank vector r = [ry,79,...,7rN]|, Where
each r; satisfies 0 < r; < 7 and r; € Z. This vector r specifies
the rank of the LoRA adaptation at each layer of the network.
7 is the maximum rank of Superlora. When r; = 0, the LoRA
module is not applied to the [ layer.

Consequently, exhaustively training all these possible
LoRA configurations is computationally intensive and time-
consuming. For instance, a diffusion model with N = 16
layers and a maximum rank 7 = 8 per layer would yield
approximately 1 x 10'* possible rank configurations. Training
such a vast number of configurations is impractical.

To address this impracticality and train Superlora efficiently,
we employ a weight-sharing strategy. The training process
does not involve training each sub-network independently.
Instead, at each iteration, a specific configuration r, is ran-
domly sampled. Subsequently, only the parameters within the
sampled rank are updated, with all other parameters kept
frozen during that step. This strategy significantly reduces
the computational burden of training the SuperLoRA struc-
ture itself, as it avoids the need to train all its numerous
potential configurations separately, thereby enabling efficient
exploration of its vast configuration space specifically during
this training phase.

While weight-sharing makes Superlora training feasible, its
vast search space can still lead to inefficient learning from
uniform random sampling. To effectively train the Superlora
in such a large search space, we introduce the dynamic
rank-increasing strategy, which is similar to the curriculum
learning paradigm. Initially, we set the maximum rank 7
to 1, focusing the training on configurations with minimal
complexity. We gradually allocate more rank parameters to
Superlora as training progresses. This rank increase operates
at regular intervals, denoted by v, throughout the training
process. At each interval, we increment 7 by a predefined step
size until it reaches a maximum rank hyperparameter, 7gpq;.

By gradually increasing the rank, we allow the model
to first learn low-rank adaptations, which capture the most
significant features with fewer parameters. This facilitates a
more stable and efficient training process. As higher ranks are
introduced, the model progressively captures more complex
representations without overwhelming the training dynamics.
This strategy also ensures that all ranks up to rgn, are
adequately trained.

E. Searching with Multi-objective Criteria

To proactively search for the optimal LoRA for any en-
tity and ensure high-quality image generation, we define a
multi-objective function L that incorporates three essential
components: aesthetic quality, parameter efficiency, and entity
fidelity.

Firstly, to assess aesthetic quality, we employ an aesthetic
score predictor [87], [88] trained on human aesthetic prefer-
ence data. This predictor evaluates the generated images based
on prompts and assigns a score, referred to as the Human
Preference Metric (Lnpm), indicating the aesthetic appeal of
the images. Higher scores reflect images that are more likely
to be preferred by humans.

Secondly, the Memory Cost Metric (Lyem) quantifies the
number of parameters in the LoRA modules. An unconstrained
number of parameters may lead to overfitting and catastrophic
forgetting [[67]. We calculate L., by summing the number
of parameters of the selected LoRA modules, ensuring that
the LoRA has a compact storage size. This ensures that only
the necessary parameter changes are performed.

Thirdly, the Concept Similarity Metric (L¢sm) assesses the
content fidelity between generated images and target entities.
This is achieved by S-Prompts [79]], a continual Al-generated
detector. Specifically, S-Prompts is a binary classifier built
upon the pre-trained CLIP. For each new entity, this classifier
is trained to distinguish the entity’s authentic training images
from those generated by the model. The resulting classification
accuracy of S-Prompts directly constitutes the L.g, score,
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where higher accuracy indicates greater fidelity of the gen-
erated images to the characteristics of the target entity.

The overall function of L is a weighted sum of these three
metrics as Eq. 4]

L= *O‘Lcsm + 5me7n - 'Ythm- (4)

where «, [, and ~ are hyperparameters that balance the
magnitude of differences metrics.

Algorithm 1 Optimizer for CEAL

1: Input: Search space R, Initial temperature 7y, Cooling
rate o, Total iterations Ny, Objective Function L

2: Output: Optimal solution

Initialize a solution r of length 16, with randomly selected

values from R

4: Set current temperature 7' = Ty

5: for 7 in 1 to Ny do

6: Generate a new solution r’ by random modifying r

7

8

9

(95}

Generate images by r and r’/
Evaluate r and r’ using L, get fitness scores f and f’
if /' < f then

10: Accept 1’ as the new current solution
11: else

12: Accept 1’ with probability exp(—L;f)
13: end if

14: Update temperature 7' = a X T’

15: end for

16: Return the final solution r

Optimizing this multi-objective function poses significant
challenges due to the discrete and high-dimensional nature
of the search space. Traditional optimization methods, such
as grid search or random search, are inefficient and may
not effectively explore the vast combinations of rank values
across different layers. Gradient-based methods are unsuitable
because the rank values are discrete and non-differentiable.

To address these challenges, we use Simulated Annealing
(SA) as our optimization algorithm, detailed in Algorithm
SA is a probabilistic technique well-suited for discrete op-
timization problems and can effectively explore large search
spaces. It mimics the annealing process in metallurgy, where a
material is heated and then slowly cooled to decrease defects
and find a low-energy state.

In the context of Superlora, each potential combination
of rank values across all block layers of the denoising U-
Net in Stable Diffusion constitutes a solution, represented
as a sequence [ri,To,...,7,]. SA effectively explores this
discrete space by initiating with a high temperature (7, =
100), allowing broad exploration of the solution landscape.
At each iteration, it generates a new solution by making
slight modifications to the current one, promoting diversity
and avoiding premature convergence. We evaluate the fitness
of both solutions using the objective function L, ensuring
progress toward optimality. As the algorithm progresses, we
decrease the temperature according to a cooling schedule with
a rate of a. This strategy allows SA to extensively explore
the search space initially and progressively focus on refining

the solution, thus avoiding local minima and increasing the
likelihood of finding the global optimum.

Upon obtaining a solution, we extract the corresponding
LoRA modules from Superlora and integrate them into the
base model 2] We then generate images with fixed parameters
to evaluate performance L.

In CEL, we sequentially obtain a set of optimal LoRA
modules for each entity and merge them into the base model.
This seamless integration results in no additional compu-
tational overhead during inference and eliminates memory
requirements for continual learning.

IV. BENCHMARK DESIGN AND CONSTRUCTION
A. Datasets Collection

We collect three sets as benchmarks for CEL. The bench-
marks cover general objects, human faces, and artistic styles.
CEL-Objects comprises 15 common objects, each represented
by 4-6 images, sourced from [7], [38|]. The dataset includes
various categories such as buildings, animals, and household
items. The benchmark sequence consists of ’barn’, ’cat’,
"cat statue’, “clock’, *colorful teapot’, *dog’, ’elephant’, *mug
skulls’, *physics mug’, ‘red teapot’, ‘round bird’, *teddybear’,
’thin bird’, ’tortoise plushy’, and ’wooden pot’.

CEL-Faces is derived from the high-resolution CelebA-HQ
dataset [89]]. We select seven identities, each with a minimum
of 20 samples, based on the highest number of available
images. These celebrity identities serve as unique conceptual
entities for our incremental learning task. The continual learn-
ing sequence comprises '#1 woman’, "#2 man’, "#3 man’, "#4
man’, ’#5 man’, '#6 woman’, and *#7 woman’.

CEL-Styles features 1,207 images representing 6 distinct
artistic styles, collected from Wikiart [90]. The dataset show-
cases works by renowned artists representing various art move-
ments, including Neo-impressionism, Impressionism, Post-
Impressionism, Mathematical art, Russian Revivalism, and
Modernism. Each image is accompanied by a descriptive
caption. The dataset is split into training and validation sets
using an 8:2 ratio for each artist. The sequence of continual
learning comprises ‘Georges Seurat’, ‘Konstantin Korovin’,
‘Maurice Prendergast’, ‘M.C. Escher’, ‘Boris Kustodiev’, and
‘Marc Chagall’.

B. Metrics for Evaluation

The CEL task encompasses the requirements of both con-
tinuous learning and T2I generation. Existing metrics for
both of these two tasks are insufficient for comprehensive
evaluation. To comprehensively assess the performance of
CEL, we integrate the T2I metrics into continuous learning
scenarios to form a (single-stage) performance indicator and
then derive two CEL performance metrics.

The Entity Generation Performance Indicator (EGI, denoted
as p) measures the performance during a single learning
session. We define p as the average of three commonly used
T2I generation metrics [3]], [6], [38]]: the DINO Score, the
CLIP-I Score, and the CLIP-T Score.

The DINO and CLIP-I scores assess visual similarity,
measuring the similarity between features of the generated
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images and the target images using DINO [91]] and CLIP [32],
respectively. The CLIP-T Score evaluates textual similarity,
defined as the average cosine similarity between the CLIP
features of the generated images and their corresponding text
prompts. Formally, p] denotes the performance of the model
on the i-th task after learning j sessions. Based on p, we define
two metrics:

Incremental Concept Accuracy (ICA) measures the genera-
tion performance of new entities after the model has completed
all continual learning sessions. It is defined as:

S
— 1 S
ICA—S;/)Z-, 5)

where S is the total number of continual learning sessions.
Incremental Concept Forgetting (ICF) quantifies the de-
crease in performance on previously learned concepts after
learning new ones. It is defined as:

=
ICF = m; 0} = pf|, (6)

where p! is the performance on the i-th task immediately after
learning it, and p? is the performance on the i-th task after
all sessions have been completed.

V. EXPERIMENTS

In this section, we present a comprehensive evaluation of
our proposed CEAL approach for continual concept learning,
encompassing quantitative and qualitative analysis.

A. Evaluation Setup

We implemented baselines of continual learning methods
for CEL task: generative replay (Replay), EWC [61] and C-
LoRA [82]]. Additionally, we report the performance of state-
of-the-art personalization methods, including Textual Inversion
(TI) [7], DreamBooth (DB) [6], ED-LoRA [40] and Custom
Diffusion (CD) [38]]. We also compare our method with
LoRA [15]], using a rank of » = 8 for each concept. We train
independent LoRA adapters for each entity and keep them in
memory, which serves as a potential upper bound for CEL
and offers additional context for our results. For CEAL, we
set 7finql = 8, which means that the maximum rank obtained
by CEAL is consistent with that of LoRA with r = 8.

B. Implementation Details

We conducted our experiments using Stable Diffusion
v1.5 [3] as the base model. The training process utilized the
Mean Squared Error (MSE) loss function, and the LoRA was
integrated into all attention layers 16 of the denoising U-Net
architecture. Superlora begins with an initial rank of 1, which
is progressively incremented by 1 after every 1,000 training
iteration, resulting in a final rank (7 f;,q) of 8 after 8,000
iterations. Training was carried out with a batch size of 4. For
optimization, we used the AdamW optimizer with a learning
rate of 1 x 10~* and a weight decay of 0.01. All input images
were preprocessed to a resolution of 512 x 512 pixels.

For the search optimizer, we employ Simulated Annealing
(SA), as presented in Algorithm |I} In SA, a solution is a
sequence of rank values, where each value is selected for a
corresponding layer in Superlora. The length of each solution
is set to 16, corresponding to the 16 block layers in the
denoising U-Net of SD. We initialize the SA parameters with
an initial temperature (7y) of 100, a cooling rate (asa) of
0.95, and a total number of iterations (N;) of 1000. Our
search space is defined as the set {0, 1,2, 4, 6, 8}, meaning that
each element in a solution can take on one of these values.
The SA algorithm explores this designated space to find the
optimal solution. The fitness function of SA is determined
by the objective function L. Given a specific solution, we
first extract the LoRA from Superlora with the corresponding
ranks. Then we merge the extracted LoRA into the SD model
and generate several images (specifically, 4 images per prompt,
using prompts listed in the Supplementary Material). These
images have dimensions of 512 x 512 pixels, a guidance scale
of 7.5, and 50 sample steps. The seeds for sampling are also
fixed. In our main results, we simply set the hyperparameters
«, 3, and ~y in the objective function to 100, 0.00001, and 0.1,
respectively, across all benchmarks. The purpose of this setting
is to normalize the magnitudes of these objective values to the
same scale, ensuring a balanced contribution from each term
during the optimization process. This serves as a standardized
baseline, and with minimal tuning, the search results can be
adapted to meet specific requirements.

C. Main Qualitative Results

To evaluate the effectiveness of our continual learning
approach, we conducted qualitative assessments for single-
concept fidelity and multi-concept compositionality.

Figure [ presents a visual comparison of different methods
on the CEL-Faces dataset. The images shown are for the final
three identities learned after all methods completed the full
sequence of seven continual learning sessions. The results
clearly highlight the limitations of existing approaches. For
instance, the DB baseline suffers from complete mode col-
lapse, failing to generate any coherent images. Other methods,
while avoiding outright collapse, exhibit significant forgetting,
producing faces that bear little resemblance to the target
identities. In stark contrast, our method (CEAL) successfully
generates high-fidelity images that are visually consistent
with the target subjects, demonstrating its superior ability to
mitigate catastrophic forgetting.

We further challenged the models with a multi-subject gen-
eration task on the CEL-Objects dataset, with results displayed
in Figure [5] This evaluation was performed after the models
had continually learned all 15 distinct entities. Although the
CEL-Objects dataset primarily consists of simple, distinct
items, and methods like TI and LoRA can achieve high-
fidelity representations for single entities, they face significant
challenges in multi-concept generation. This limitation likely
stems from their training strategies, which do not explicitly
optimize for the simultaneous generation of multiple entities.

In contrast, our proposed method, CEAL, excels in this
complex task. It not only generates high-quality images that
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Fig. 4: Visualizations of continual generation results on CEL-Faces. We present visualizations of generated images from
various methods for newly learned entities upon completion of all 7 continual learning sessions.

accurately depict newly learned entities but also seamlessly
integrates them with previously learned concepts. As shown,
our approach successfully captures the complex interactions
between concepts in a single frame, demonstrating remarkable
performance in multi-concept compositional generation. Ad-
ditional qualitative results are provided in the supplementary
material.

D. Main Quantitative Results

Table [I] presents a comparative analysis of /CA and ICF
across three benchmarks: CEL-Objects, CEL-Faces, and CEL-
Styles. The primary focus of ICA is to evaluate the fidelity of
new entities after continual learning, whereas /CF measures
the degree of forgetting after learning new entities.

Methods such as Replay, EWC, and DB sequentially fine-
tune the denoising network without increasing the number of
parameters (# P). TI only requires adding a single token, so its
# P is almost negligible. Although these methods incorporate
knowledge replay and regularization to prevent forgetting,
they still exhibit inferior performance compared to parameter
expansion methods, as indicated by the increase in ICF.
While TI generally performs well on CEL-Faces and CEL-
Styles benchmarks with no forgetting problem, its performance
is suboptimal on the more challenging CEL-Objects dataset.
This may indicate that learning human faces and art styles
is noticeably easier for these methods than CEL-Objects,
possibly due to the T2I model having a more intuitive grasp
of these concepts. Our method significantly outperforms these
approaches without requiring additional parameters.

For methods that expand parameters for each new entity,
we report the average increase in parameters (#P). LoRA

increases parameters by 2.59M per session, CD requires an
increase of 19.17M parameters, and ED-LoRA needs 0.81M
per session. Although ED-LoRA and CD both employ LoRA
fusion strategies, their fusion is centralized, meaning that when
generating multiple concepts together, they merge LoRAs for
better results but must keep all independent LoRAs in memory.
C-LORA merges LoRAs together but keeps separate from the
base model, resulting in a small parameter increase of 0.78 M
per entity, as reported in their paper. CEAL significantly
outperforms these existing approaches without any additional
parameters. This success can be attributed to our innovative
multi-objective searching strategy, which strikes a remarkable
balance between performance enhancement and parameter
efficiency.

E. Ablation Studies

Table [T presents an ablation study on the impact of the main
components of CEAL in terms of ICA. We individually re-
move each main component from CEAL to assess its influence.
Our full CEAL significantly outperforms the Naive LoRA
Merging baseline (48.12), which highlights the effectiveness
of CEAL’s overall design.

We first evaluate CEAL’s core architectural and training
strategies. Replacing the entire Superlora structure with a
standard fixed max-rank LoRA, upon which our search process
is then applied (CEAL w/o Superlora), reduces performance
to 58.95. This underscores Superlora’s inherent advantage in
facilitating the discovery of optimal layer-wise configurations.
Similarly, omitting the Dynamic Rank-Increasing Strategy dur-
ing Superlora training (CEAL w/o Dynamic Rank-Increasing)
results in an ICA score of 59.12, confirming this strategy’s
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1d6 dog wearing
Jacket.

1d6 dog wearing

sunglasses. 1d2 cat in room

1d6 dog standing with 1d12 teddybear and 145 teapot and
i1d11 bird on beach 1d10

1d12 teddybear sitting
teapot on table in front of 1d1 barn

y/

LoRA

CD

C-LoRA ED-LoRA

CEAL

Fig. 5: Visualization of multi-subject generation on CEL-Objects. We show the results of multi-subject generation on
CEL-Objects after all competing methods have completed 15 continual sessions. Entities are marked by their identifiers [id],
with their target samples provided at the bottom and prompts at the top.

contribution to effective LoRA learning. Constraining the
search to a Uniform Rank across all layers, as opposed to
distinct layer-wise ranks (CEAL w/o Layer-wise Ranks), not
only leads to suboptimal performance with an ICA of 60.12
but also potentially increases parameter count due to less
efficient allocation. Finally, substituting the SA Optimizer
with a random search mechanism (CEAL w/o SA Optimizer)
causes a substantial performance drop to 53.89, accompanied
by high variance. This result affirms the critical role of
Simulated Annealing in effectively and consistently navigating
the complex search space of LoRA configurations.

Next, we individually remove each of the three search
criteria—Human Preference Metric, Memory Cost Metric, and
Concept Similarity Metric—and perform the search each time.
The Concept Similarity Metric proves to be the most crucial
component in the CEAL method, as removing it results in a
substantial accuracy drop of 12.30. This is mainly because
when only two metrics remain, the search process tends to
select the LoRA with the smallest number of parameters,
which may not align with the objectives of the CEL.

Finally, investigating the merging process, we found that

applying the optimized LoRAs independently without merging
them into the base model (CEAL w/o Merging) achieves an
ICA\ew Of 65.2510.7¢. This is slightly higher than the full
CEAL with merging, suggesting a marginal trade-off between
peak concept fidelity and the parameter efficiency gained by
merging. However, the full CEAL’s merging provides the
significant benefit of zero additional parameters post-learning.

Then we study the impact of the main hyperparameters
Tfinal> V> @, B, and v in Fig.|6| 7fnq; constrains the maximum
LoRA rank that can be searched for each entity. The results
show that the performance is poor when rf,4; = 1, indicating
that the rank of LoRA may be too limited to learn LoRA
sufficiently. Interestingly, the performance is suboptimal when
Tfinal = 32. This result supports our claim that a large
search space is difficult to train, and it is essential to design
mechanisms that ensure Superlora is adequately trained and to
develop search algorithms with better evaluation metrics. v de-
termines the training steps required before adding a new rank
to the Superlora. The results demonstrate that using 1000 steps
as the increment is sufficient for achieving good performance,
and the model’s performance is not highly sensitive to the
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TABLE I: Results for all benchmarks.

Datasets CEL-Objects CEL-Faces CEL-Style
Method ZP () TCA ™ ICF () TCA (D ICF () TCA ™ CF (D)
LoRA 2.59M 62.38+0.42 - 57.3240.83 - 41.5540.10 -
CD 19.17M 58.8641.22 - 55.9141.22 - 41.4740.13 -
ED-LoRA  0.81M 55.3540.83 - 58.7740.44 - 40.3340.20 -
C-LoRA 0.78M 61.944¢.30 6.1240.49 57.481¢.29 2.8340.23 41.4540.48 1.03+0.09
TI 0.0 48.6141 38 - 59.33+1.25 - 38.3040.42 -
Replay 0.0 27~27i6A97 25.36i3,10 14.22i0‘29 8.84i036 20.88i1A79 5.98i0A72
EWC 0.0 49.154.0.22 12.3941 28 56.63+0.73 4.8440.89 37.1140.83 1.83+0.22
DB 0.0 32.58+5.08  38.07+2.72  49.0210.30 4.6110.62 41.9940.40 1.0110.29
CEAL 0.0 63.74.031 9.121088 59011073 2.Tlig.72 45.211053 1.04+0.04
65 o1
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Fig. 6: Impact of 7fpnai, v, @, 8, and v on CEL-Objects.

TABLE II: Ablation study on the main components of CEAL
on CEL-Objects.

Component Variant ICApew

Naive LoRA Merging 48.1241.31
CEAL 63.7440.31
CEAL w/o Superlora (Fixed Max-Rank LoRA + Search) 58.9510.69
CEAL w/o Dynamic Rank-Increasing 59.1240.69
CEAL w/o Layer-wise Ranks (Uniform Rank Search) 60.1240.40
CEAL w/o SA Optimizer (e.g., Random Search) 53.89+10.34
CEAL w/o thm (Human Preference Metric) 60.4840.34
CEAL w/0 Lyem (Memory Cost Metric) 62.8910.75
CEAL w/0 L¢sm (Concept Similarity Metric) 51.4440.26
CEAL w/o Merging (Independent Optimized LoRAs) 65.2540.76

choice of v. Even with smaller or larger step sizes, the model
still maintains relatively good accuracy. For hyperparameters
«, 8, and ~y that balance the searching objective, we find that
although there are fluctuations and impacts, the variations are
not significant.

F. Computational Costs

Training and optimizing Superlora for each concept requires
roughly 2 gpu hours on a single Nvidia RTX 4090 GPU.

The subsequent search phase for optimal rank configura-
tions, however, is considerably more time-consuming. The
dominant factor in this cost is the image generation required
to evaluate each candidate solution presented by the SA
optimizer. Other operations, such as extracting specific LoORA
modules from the Superlora backbone or calculating aesthetic
and CLIP scores, have a negligible computational overhead
in comparison. For each prompt used in the evaluation, we
generate 4 images, a process that takes approximately 4.5

seconds on an NVIDIA RTX 4090. To illustrate, consider
the CEL-Objects benchmark, where each concept is typically
evaluated using 20 distinct prompts. With the SA optimizer
set to a maximum of N; = 1000 iterations, evaluating one
candidate solution (i.e., 20 prompts) takes 20 x 4.5s = 90s.
This would lead to a maximum theoretical search duration of
90s/iteration x 1000 iterations = 90, 000 seconds, or approxi-
mately 25 GPU hours per concept.

However, in practice, the SA algorithm often converges
to a satisfactory solution well before reaching the maximum
iteration limit. Furthermore, if the same rank configuration is
proposed multiple times by the SA optimizer, its previously
computed fitness score can be directly reused, avoiding re-
dundant image generation. Due to these factors, the average
search time per concept is significantly lower, typically around
4 GPU hours on the same hardware.

VI. CONCLUSION

This paper introduces the concept of Continual Conceptual
Entity Learning (CEL) for pre-trained T2I models. We intro-
duce Superlora, a search space to organize potential LoRA
configurations into a comprehensive set. To provide optimal
customized LoRA rank configurations reasonably, we propose
a novel dynamic rank-increasing strategy for training Super-
lora. We then use an efficient optimizer to continuously search
for the optimal LoRA in line with multiple competing crite-
ria. In addition, three comprehensive evaluation metrics and
benchmarks for CEL are introduced. Extensive experiments
on three benchmarks demonstrate the effectiveness of CEAL.
However, it is worth noting that the proposed method may
introduce additional computational overhead due to the search
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process. On a positive note, our approach enhances parameter
efficiency, potentially making AI models more accessible by
reducing storage resource requirements.

Furthermore, evaluating CEAL on more diverse and chal-
lenging large-scale real-world datasets constitutes an important
direction for future work to more broadly assess its general-
ization capabilities and practical applicability.
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