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Abstract—Current Text-to-Image generative models struggle to1

continuously learn multiple distinct entities or concepts, limiting2

their scalability and hindering practical deployment in dynamic3

environments. We formulate this task as Continual Conceptual4

Entity Learning (CEL) and propose a novel framework called5

Continual Entity Adapter Learning (CEAL). CEAL leverages6

a compact set of tunable parameters, termed SuperLoRA, to7

efficient and scalable learning of new entities. We propose8

a dynamic rank-increasing strategy to train the SuperLoRA,9

balancing computational efficiency with performance. To evaluate10

our method, we create three benchmarks encompassing generic11

objects, human faces, and artistic styles. Experimental results12

demonstrate that CEAL effectively learns new entities while13

preserving prior knowledge, outperforming existing methods in14

both entity fidelity and parameter efficiency.15

Index Terms—Continual learning, text-to-image synthesis, dif-16

fusion models.17

I. INTRODUCTION18

Recently, Text-to-Image (T2I) generative models, such as19

GLIDE [1], DALL·E [2], and Stable Diffusion (SD) [3],20

have achieved remarkable success in generating diverse and21

complex images based on textual descriptions with high fi-22

delity. However, they often struggle to generate styles, objects,23

or characters that fall outside the scope of their pre-trained24

datasets. For instance, while current T2I models are experts at25

generating images such as “a dog on the moon,” they cannot26

create images such as “our pet dog Buddy on the moon”27

without being trained on Buddy’s images during the pre-28

training phase. Thus, personalizing pre-trained T2I models for29

new user-provided concepts (e.g., styles [4], [5], objects [6],30

[7], or characters [8]) is increasingly in demand and has31

emerged as a research hotspot.32

To bridge this gap, we introduce the task of Continual33

Conceptual Entity Learning (CEL). CEL involves sequentially34

integrating new conceptual entities (e.g., specific objects, per-35

sons, or styles) into existing T2I models in an ongoing manner36

over time, crucially, without extensive retraining on previ-37

ous data. Unlike previous continual learning approaches for38

generative models [9]–[14] focused on class-level generation39

or single-session multi-concept customization methods (e.g.,40
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Fig. 1: In CEL, the model sequentially learns new entities (e.g.,
pets named ‘Whiskers’ or ‘Buddy’) from limited samples in
each learning session. After learning, the T2I generator can
generate images of both newly learned and previously known
entities based on text prompts.

[33]) that learn multiple concepts simultaneously, CEL empha- 41

sizes entity-level sequential learning. The model must capture 42

and reproduce individual entities’ unique characteristics and 43

details (see Fig. 1). The primary challenges of CEL stem 44

from three core requirements: (1) sequentially learning new, 45

distinct entities effectively from limited data, (2) mitigating 46

catastrophic forgetting of previously acquired entities, and 47

(3) achieving this in a parameter-efficient manner to ensure 48

scalability. 49

Existing approaches [6], [7] for T2I personalization are 50

mainly designed for single-stage incremental learning and 51

are not well-suited for the continuous, sequential learning of 52

multiple new entities over time. When multiple new entities 53

are continually introduced, these existing methods struggle to 54

maintain both newly learned and previously acquired knowl- 55

edge, leading to catastrophic forgetting. Recently, Low-Rank 56

Adaptation (LoRA) [15], [16] has emerged as an efficient 57

method for fine-tuning T2I models using low-rank adapters, 58

allowing for scalable learning of numerous entities with small 59

parameter expansion. However, the storage requirements for 60

new entities remain a significant challenge, particularly in 61

resource-constrained environments. Additionally, our findings 62

indicate that directly merging multiple LoRA weights can 63

result in conflicts, preventing the generation of high-quality 64

outputs of new concepts. 65

To overcome these challenges, we propose a novel frame- 66

work, termed Continual Entity Adapter Learning (CEAL), for 67

CEL. Grounded in the theoretical understanding of parameter 68

adaptation and network function, CEAL proactively searches 69

for a layer-wise LoRA allocation for each entity that can 70

be integrated with minimal conflict, thereby ensuring entity 71

fidelity, knowledge preservation, and generalization ability. 72

CEAL’s design is grounded in the following theoretical 73
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principles and empirical observations: First, following the74

principle of Functional Localisation observed in deep learning75

models [17], diffusion models feature functionally distinct76

layers, each specializing in specific image generation aspects77

such as content, style, or color attributes [18], [19]. This Layer-78

wise Functional Specialization thus requires optimized, layer-79

specific LoRA configurations and provides the theoretical80

grounding for strategically allocating these parameters with81

varying ranks to mitigate interference. Second, the foundation82

of LoRA relies on the Intrinsic Dimension Hypothesis [20],83

suggesting adaptation lies in a low-dimensional subspace. Fur-84

thermore, consistent with the Lottery Ticket Hypothesis [21],85

which implies sparse weight updates can be sufficient, LoRA86

weights typically exhibit high sparsity. This means inter-87

entity conflicts are largely confined to a small parameter88

subset, thus leaving ample room to integrate new knowledge89

with minimal interference. Third, LoRA modules typically90

lack orthogonality, and their naive merging often leads to91

destructive interference from conflicting entity information.92

Thus, CEAL allocates LoRAs with varying ranks to each93

layer instead of using a uniform rank. To implement this, we94

introduce a new structure called Superlora, a rank-degradable95

LoRA architecture viewed as a combination of multiple low-96

rank LoRAs, which enables weight-sharing. We train Super-97

lora for each entity and search for the optimal configuration98

based on multiple criteria. The optimized LoRA weights are99

then merged into the base model, allowing for the generation100

of new entities without increasing the overall parameter count.101

The training quality of Superlora directly affects the search102

results. Since exhaustively training all possible LoRA config-103

urations is computationally infeasible, an efficient strategy is104

crucial to explore the vast configuration space effectively. We105

introduce a dynamic rank-increasing strategy that gradually106

expands the search space by introducing new rank parameters107

alongside the training steps. This approach allows Superlora108

to initially focus on learning essential low-rank configura-109

tions before progressively exploring more complex, higher-110

rank configurations. After training Superlora for a new entity,111

an optimizer explores Superlora using multiple criteria to112

determine the optimal LoRA rank configuration for that entity.113

To facilitate standardized evaluation of methods addressing114

the unique challenges of CEL, we construct three bench-115

marks that encapsulate a range of different concepts, including116

generic objects, human faces, and distinctive artistic styles. In117

addition, we design evaluation metrics for CEL that evaluate118

the model’s performance on new tasks and its susceptibility119

to forgetting in continuous learning. Extensive experiments120

on three benchmarks demonstrate the effectiveness of CEAL.121

Code and data will be publicly available.122

The technical contributions are manifold:123

• We propose a framework, CEAL, to continuously learn enti-124

ties using a compact set of tunable parameters. To optimize125

CEAL, we define three key CEL criteria that encompass126

concept fidelity, parameter efficiency, and aesthetic quality.127

• We propose a novel rank-degradable LoRA architecture128

called Superlora. This architecture allows for weight-129

sharing and dynamic allocation of LoRA ranks across130

different layers, enabling efficient and scalable searching.131

Our dynamic rank-increasing strategy further stabilizes the 132

training process, ensuring effective learning of new entities. 133

• We establish three benchmarks for CEL. Each benchmark 134

focuses on different aspects of the task, allowing for com- 135

prehensive evaluation. 136

II. RELATED WORKS 137

A. Text-to-image Personalization 138

Text-to-image (T2I) generation models [1], [22]–[31] have 139

received unprecedented interest from the community in recent 140

years. To achieve text-to-image generation, these models typ- 141

ically first employ a language encoder, such as CLIP [32], 142

to encode user text input into a latent representation. This 143

latent representation then serves as a conditional input, with 144

the model subsequently trained on large-scale paired image- 145

text datasets to generate corresponding images. 146

With the rapid advance of T2I models, their personalization 147

(a.k.a. customization) is becoming increasingly crucial. Per- 148

sonalization methods [33]–[35] tailor a model to the specific 149

needs of an individual or group by utilizing data unique to the 150

intended users. DreamBooth [6] fine-tunes all parameters of 151

the diffusion network by just giving a few images of the target 152

entity. DreamBooth uses the pre-trained model to generate 153

regularization data about similar concepts to relieve forgetting. 154

However, tuning all parameters on few-shot images would 155

increase the risk of the model forgetting previously learned 156

knowledge and overfitting. Textural Inversion [7] proposes a 157

concise way for customization by solely optimizing a set of 158

word embeddings to portray a novel concept while leaving the 159

denoising model fixed. Although it effectively preserves the 160

original model’s knowledge, it may have restricted learning 161

capability and may encounter difficulty in comprehending in- 162

tricate entities. Cones [19] identifies and manipulates concept 163

neurons within diffusion models to enable efficient and cus- 164

tomizable multi-subject image generation. InstantBooth [36] 165

captures subject identity by representing the general concept 166

as a textual embedding and feeding fine-grained visual details 167

through lightweight adapter layers into the frozen model. 168

HyperDreamBooth [37] uses a HyperNetwork to generate 169

compact, personalized weights from a single image, enabling 170

extremely fast personalization of T2I models. Custom Dif- 171

fusion (CD) [38] combines these two strategies for multi- 172

concept learning. CD learns a set of textual embeddings for 173

a given concept and fixes the parameters of the text encoder, 174

only fine-tuning a small subset of parameters in the cross- 175

attention layers of the denoising model, specifically the key 176

and value matrices. Concept Weaver [39], building upon CD, 177

then addresses how to effectively fuse the visual features 178

of these multiple distinct concepts into a single image at 179

inference time. It first generates a template image aligned 180

with the text prompt, then utilizes spatial region masks to 181

inject the visual appearances of multiple customized concepts 182

into their respective regions. Similarly, ED-LoRA [40] merges 183

multiple LoRAs into a single model using Gradient Fusion 184

and employs Regionally Controllable Sampling to accurately 185

place the customized concepts and their attributes in im- 186

ages. LoRA-Composer [41] is a training-free method that 187
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leverages the cross-attention mechanism to inject concept-188

specific LoRA features into image regions designated by user-189

provided layout conditions. MC2 [42] enables training-free190

composition of heterogeneous single-concept models (LoRA191

or TI) using inference-time optimization. Its Multi-concept192

Guidance (MCG) refines attention weights to spatially disen-193

tangle concepts and ensure their faithful representation while194

minimizing interference. However, these works primarily fo-195

cus on composing multiple pre-existing customized concepts.196

The CEL task, in stark contrast, centers on the continual,197

sequential learning of new entities and the critical mitigation198

of catastrophic forgetting.199

Recent works [16] adopt parameter-efficient fine-tuning200

methods, such as LoRA [15], to learn new entities without tun-201

ing the entire denoising network. Building upon the parameter202

efficiency of LoRA, some works [43]–[45] focus on optimiz-203

ing the allocation of trainable parameters under the constraint204

of limited storage resources. DyLoRA [43] trains LoRA with a205

range of ranks, enabling dynamic adjustment of model capac-206

ity without retraining. AdaLoRA [44] adaptively allocates the207

parameter budget among different weight matrices based on208

their importance scores. IncreLoRA [45] incrementally adds209

trainable parameters during training. However, while these210

methods enhance LoRA’s parameter efficiency, they are not211

tailored for the CEL task. They typically lack a proactive212

mechanism to automatically determine optimal, layer-wise213

LoRA configurations that minimize inter-entity conflict during214

sequential learning, thus often requiring users to define these215

specific CEL-focused setups. Moreover, stand-alone addition216

of each new concept brings substantial modifications to the217

model parameters, leading to an inevitable rise in storage218

burden and knowledge forgetting.219

B. Continual Learning220

Continual learning is a machine learning paradigm that221

learns new data over time without forgetting previously learned222

knowledge. Three primary strategies are used to address the223

challenge of catastrophic forgetting. Rehearsal methods allow224

a model to partially access and utilize data from previous225

sessions when learning new tasks. Previous data can be226

obtained by storing samples from past tasks [46]–[56] or227

synthesizing through generative models [9], [57]–[60]. Regu-228

larization methods [48], [61]–[68] use the knowledge from the229

old model to guide and constrain the learning process for new230

tasks, by techniques such as knowledge distillation. Network231

Expansion methods [69]–[73] augment the model’s parame-232

ters to incorporate new knowledge without interfering with233

previous parameters, using methods like network expanding-234

pruning [74] and Neural Architecture Search (NAS) [75],235

[76]. Recently, parameter efficient tuning, such as prompt-236

tuning [77]–[80] and adapter [81], shows a promising way237

for continual learning on pre-trained models. However, most238

studies focus only on a class-level continual learning scenario,239

where the class serves as the learning unit. Consequently, they240

cannot be directly applied to the CEL scenario, where the241

learning unit is the entity rather than the class. Recently, C-242

LoRA [81], [82] introduces the use of LoRA to learn each243

entity for T2I diffusion models. However, C-LoRA stores all 244

LoRA parameters in memory, which becomes problematic 245

when dealing with a large number of entities. 246

III. METHODS 247

A. Preliminary and Problem Formulation 248

Preliminary for T2I Diffusion Models: To achieve high- 249

quality and creative image generation, T2I diffusion mod- 250

els [3], [83], [84] have become a hot topic of current research. 251

T2I diffusion models are multimodal generators that learn 252

precise correspondences between textual descriptions and im- 253

ages. Based on these learned correspondences, trained models 254

generate images aligned with given textual prompts through a 255

progressive denoising process. Given a diffusion model θ, the 256

training objective can be derived as Eq. 1. 257

E(x0,C,ϵ,t)

[
∥ϵ− ϵ̂θ(xt, C, t)∥2

]
, (1)

where ϵ ∼ N (0, I) is a random noise, x0 is the original clean 258

image, xt corresponds to the noised image at the t-th timestep, 259

and C is the text embeddings as condition. 260

Problem Formulation: In CEL, we continually insert knowl- 261

edge of new entities into a pre-trained T2I diffusion model 262

by reducing the reconstruction loss 1. An entity refers to any 263

conceptual or physical item, such as an object, character, or 264

artistic style. 265

Formally, the model learns sequentially over S sessions, 266

where each session introduces a new entity. In the session s, 267

the T2I model θ encounters new data Ds = {(xs
i , c

s
i )|i ∈ Ns} 268

of a specific entity v. Here, Ns represents the number of train- 269

ing samples. csi denotes the textual description corresponding 270

to the image xs
i . It follows a structured template like “a photo 271

of id,” where id is the identifier for the newly introduced 272

entity. Once trained, we can use id in text prompts and the 273

model θ to create the desired images. This process is repeated 274

until all S entities are learned. θ is expected to have the 275

capability to generate images containing any combination of 276

the learned S entities, as shown in Fig. 5. 277

B. Empirical Analysis of LoRA 278

LoRA [15] is an effective approach for fine-tuning the 279

denoising model to incorporate new entities. Unlike traditional 280

fine-tuning, LoRA introduces compact, low-rank matrices to 281

adapt existing pre-trained weights. Only these new matrices 282

are updated during training, keeping the original model pa- 283

rameters frozen. Formally, given a pre-trained T2I model θ, 284

the weights of the lth layer is W l ∈ Rnl×ml , where nl and 285

ml represent the input and output dimensions of the lth layer, 286

respectively. The calculation of low-rank adaptation applied to 287

W l can be expressed as Eq.2. 288

Ŵ l = W l +Al
r(B

l
r)

T , (2)

where Al
r ∈ Rnl×r and Bl

r ∈ Rml×r are the low-rank matrices 289

for the lth layer and r represents the rank of LoRA. 290

To analyze the behavior of LoRA in personalizing T2I 291

models, we conduct a series of experiments focusing on the 292

entities ’dog’ and ’cat’ within our CEL benchmarks. 293
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concepts at different ranks. (b) Layer-wise distribution of
LoRA update matrix ∆W . (c) Layer-wise cosine similarity
between ’dog’ and ’cat’ LoRA weights.

We train two independent LoRAs with a rank of r = 32294

for each entity. After training, we prune the trained LoRA295

to certain ranks using SVD decomposition. Interestingly, as296

illustrated in Fig. 2 (a), we can find that despite removing297

half of the parameters, the LoRA models maintain their298

capability to effectively generate the intended concepts. This299

suggests the sparsity, where many components of the LoRA300

weights have minimal contributions. This observation strongly301

supports the Lottery Ticket Hypothesis [21] in the context302

of LoRA, implying that a sparse weight update is often303

sufficient. Consequently, sacrificing some of these weights304

may not significantly impair LoRA’s overall functionality.305

Similar observations have been reported in related studies [85],306

[86].307

Then, we conduct a layer-wise analysis of the parameter308

distribution in LoRA. As shown in Fig. 2 (b), we find that309

a significant portion of the parameters ∆W in LoRA have310

magnitudes very close to zero, indicating they have little311

impact on the output of the pre-trained models. Moreover, the312

weight distributions of LoRA vary across different entities,313

suggesting that various entities need distinct parts of the314

model. This observation implies that different layers within315

diffusion models are not uniform in function. This provides316

direct empirical evidence for the principle of Functional Lo-317

calisation [17] within diffusion models, aligning with findings318

in related research [18], [19], and theoretically justifying our319

strategy of allocating layer-specific ranks rather than a uniform320

rank.321

Finally, we computed the layer-wise cosine similarity dis-322

tribution between the LoRA weights for ’dog’ and ’cat’, as323

depicted in Fig. 2 (c). Despite a few layers exhibiting non- 324

zero cosine similarity, the majority of the layers demonstrate 325

values exceedingly close to zero, implying a high degree of 326

orthogonality. This observation suggests that directly merging 327

the two LoRA weights together might cause the knowledge to 328

overlap, potentially leading to less distinct representations. 329

C. Continual Entity Adapter Learning Framework 330

Based on the aforementioned theoretical principles and 331

empirical analysis, we identify several limitations of traditional 332

LoRA methods, including inefficient parameter usage and 333

challenges in merging knowledge. These drawbacks make 334

traditional LoRA unsuitable for CEL scenarios, where LoRA 335

must sequentially incorporate new entities while maintaining 336

parameter efficiency and ensuring seamless integration of 337

multiple adaptations. 338

To address these challenges, we propose the framework, 339

CEAL, to continuously and efficiently integrate a sequence 340

of new entities into a pre-trained T2I diffusion model, as 341

illustrated in Fig. 3. 342

The CEAL framework operates in two main stages. First, we 343

introduce Superlora, a novel structure designed to effectively 344

manage a wide spectrum of LoRA configurations within a 345

single adapter. Through a dynamic rank-increasing strategy, 346

Superlora is a flexible foundational adapter with adjustable 347

rank complexity. This core characteristic enables the direct 348

derivation of diverse sub-LoRA configurations, without the 349

need for retraining. This significantly simplifies the search for 350

optimal LoRA configurations across the extensive parameter 351

space. 352

Second, leveraging the trained Superlora, we search for 353

the optimal layer-wise rank allocation. This involves sampling 354

LoRA configurations, generating images, and evaluating them 355

against multi-objective criteria, specifically entity fidelity, pa- 356

rameter efficiency, and aesthetic quality, to identify compact 357

and high-performing LoRAs. 358

The resulting LoRA can then be seamlessly merged into the 359

base T2I model, providing a parameter-efficient and effective 360

solution for the continual integration of new entities. 361

D. Superlora Structure and Efficient Training Strategy 362

This section details the Superlora structure and the efficient 363

training strategies, specifically weight-sharing and dynamic 364

rank-increasing, designed to manage its vast configuration 365

space and enable its rank-degradable properties. To detail 366

the Superlora architecture, we first establish the following 367

definitions: 368

Definition 1: For a given layer l, a LoRA module attached to 369

the original weight matrix W l can be expressed as Eq.3. 370

Ŵ l = W l +Al
rl
(Bl

rl
)T , (3)

where Al
rl

∈ Rnl×rl and Bl
rl

∈ Rml×rl are the low-rank 371

matrices for the lth layer with rank rl. 372

Definition 2: The Superlora structure, mathematically defined 373

as a set R, encompasses all possible combinations of LoRA 374

configurations across the network’s layers. It is defined as: 375
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Fig. 3: Overview of CEAL Framework. In a training stage, CEAL continually integrates new entities into a pre-trained
T2I diffusion model through a two-step optimization process, which consists of a prerequisite training process (left) with
a rank-degradable LoRA structure, Superlora, and a search and optimization process (right) to identify the optimal LoRA
configuration and optimize the parameter settings according to multiple objectives.

R =
{(

Al
rl
, Bl

rl

)
| l = 1, 2, . . . , N

}
where N is the total376

number of layers in the model.377

Definition 3: A specific LoRA configuration within Superlora378

is represented by a rank vector r = [r1, r2, . . . , rN ], where379

each rl satisfies 0 ≤ rl ≤ r̂ and rl ∈ Z. This vector r specifies380

the rank of the LoRA adaptation at each layer of the network.381

r̂ is the maximum rank of Superlora. When rl = 0, the LoRA382

module is not applied to the lth layer.383

Consequently, exhaustively training all these possible384

LoRA configurations is computationally intensive and time-385

consuming. For instance, a diffusion model with N = 16386

layers and a maximum rank r̂ = 8 per layer would yield387

approximately 1× 1014 possible rank configurations. Training388

such a vast number of configurations is impractical.389

To address this impracticality and train Superlora efficiently,390

we employ a weight-sharing strategy. The training process391

does not involve training each sub-network independently.392

Instead, at each iteration, a specific configuration r, is ran-393

domly sampled. Subsequently, only the parameters within the394

sampled rank are updated, with all other parameters kept395

frozen during that step. This strategy significantly reduces396

the computational burden of training the SuperLoRA struc-397

ture itself, as it avoids the need to train all its numerous398

potential configurations separately, thereby enabling efficient399

exploration of its vast configuration space specifically during400

this training phase.401

While weight-sharing makes Superlora training feasible, its402

vast search space can still lead to inefficient learning from403

uniform random sampling. To effectively train the Superlora404

in such a large search space, we introduce the dynamic405

rank-increasing strategy, which is similar to the curriculum406

learning paradigm. Initially, we set the maximum rank r̂407

to 1, focusing the training on configurations with minimal408

complexity. We gradually allocate more rank parameters to409

Superlora as training progresses. This rank increase operates410

at regular intervals, denoted by ν, throughout the training411

process. At each interval, we increment r̂ by a predefined step412

size until it reaches a maximum rank hyperparameter, rfinal.413

By gradually increasing the rank, we allow the model 414

to first learn low-rank adaptations, which capture the most 415

significant features with fewer parameters. This facilitates a 416

more stable and efficient training process. As higher ranks are 417

introduced, the model progressively captures more complex 418

representations without overwhelming the training dynamics. 419

This strategy also ensures that all ranks up to rfinal are 420

adequately trained. 421

E. Searching with Multi-objective Criteria 422

To proactively search for the optimal LoRA for any en- 423

tity and ensure high-quality image generation, we define a 424

multi-objective function L that incorporates three essential 425

components: aesthetic quality, parameter efficiency, and entity 426

fidelity. 427

Firstly, to assess aesthetic quality, we employ an aesthetic 428

score predictor [87], [88] trained on human aesthetic prefer- 429

ence data. This predictor evaluates the generated images based 430

on prompts and assigns a score, referred to as the Human 431

Preference Metric (Lhpm), indicating the aesthetic appeal of 432

the images. Higher scores reflect images that are more likely 433

to be preferred by humans. 434

Secondly, the Memory Cost Metric (Lmcm) quantifies the 435

number of parameters in the LoRA modules. An unconstrained 436

number of parameters may lead to overfitting and catastrophic 437

forgetting [67]. We calculate Lmcm by summing the number 438

of parameters of the selected LoRA modules, ensuring that 439

the LoRA has a compact storage size. This ensures that only 440

the necessary parameter changes are performed. 441

Thirdly, the Concept Similarity Metric (Lcsm) assesses the 442

content fidelity between generated images and target entities. 443

This is achieved by S-Prompts [79], a continual AI-generated 444

detector. Specifically, S-Prompts is a binary classifier built 445

upon the pre-trained CLIP. For each new entity, this classifier 446

is trained to distinguish the entity’s authentic training images 447

from those generated by the model. The resulting classification 448

accuracy of S-Prompts directly constitutes the Lcsm score, 449
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where higher accuracy indicates greater fidelity of the gen-450

erated images to the characteristics of the target entity.451

The overall function of L is a weighted sum of these three452

metrics as Eq. 4.453

L = −αLcsm + βLmcm − γLhpm. (4)

where α, β, and γ are hyperparameters that balance the454

magnitude of differences metrics.455

Algorithm 1 Optimizer for CEAL

1: Input: Search space R, Initial temperature T0, Cooling
rate α, Total iterations NI , Objective Function L

2: Output: Optimal solution
3: Initialize a solution r of length 16, with randomly selected

values from R
4: Set current temperature T = T0

5: for i in 1 to NI do
6: Generate a new solution r′ by random modifying r
7: Generate images by r and r′

8: Evaluate r and r′ using L, get fitness scores f and f ′

9: if f ′ < f then
10: Accept r′ as the new current solution
11: else
12: Accept r′ with probability exp(− f ′−f

T )
13: end if
14: Update temperature T = α× T
15: end for
16: Return the final solution r

Optimizing this multi-objective function poses significant456

challenges due to the discrete and high-dimensional nature457

of the search space. Traditional optimization methods, such458

as grid search or random search, are inefficient and may459

not effectively explore the vast combinations of rank values460

across different layers. Gradient-based methods are unsuitable461

because the rank values are discrete and non-differentiable.462

To address these challenges, we use Simulated Annealing463

(SA) as our optimization algorithm, detailed in Algorithm 1.464

SA is a probabilistic technique well-suited for discrete op-465

timization problems and can effectively explore large search466

spaces. It mimics the annealing process in metallurgy, where a467

material is heated and then slowly cooled to decrease defects468

and find a low-energy state.469

In the context of Superlora, each potential combination470

of rank values across all block layers of the denoising U-471

Net in Stable Diffusion constitutes a solution, represented472

as a sequence [r1, r2, ..., rn]. SA effectively explores this473

discrete space by initiating with a high temperature (T0 =474

100), allowing broad exploration of the solution landscape.475

At each iteration, it generates a new solution by making476

slight modifications to the current one, promoting diversity477

and avoiding premature convergence. We evaluate the fitness478

of both solutions using the objective function L, ensuring479

progress toward optimality. As the algorithm progresses, we480

decrease the temperature according to a cooling schedule with481

a rate of α. This strategy allows SA to extensively explore482

the search space initially and progressively focus on refining483

the solution, thus avoiding local minima and increasing the 484

likelihood of finding the global optimum. 485

Upon obtaining a solution, we extract the corresponding 486

LoRA modules from Superlora and integrate them into the 487

base model 2. We then generate images with fixed parameters 488

to evaluate performance L. 489

In CEL, we sequentially obtain a set of optimal LoRA 490

modules for each entity and merge them into the base model. 491

This seamless integration results in no additional compu- 492

tational overhead during inference and eliminates memory 493

requirements for continual learning. 494

IV. BENCHMARK DESIGN AND CONSTRUCTION 495

A. Datasets Collection 496

We collect three sets as benchmarks for CEL. The bench- 497

marks cover general objects, human faces, and artistic styles. 498

CEL-Objects comprises 15 common objects, each represented 499

by 4-6 images, sourced from [7], [38]. The dataset includes 500

various categories such as buildings, animals, and household 501

items. The benchmark sequence consists of ’barn’, ’cat’, 502

’cat statue’, ’clock’, ’colorful teapot’, ’dog’, ’elephant’, ’mug 503

skulls’, ’physics mug’, ’red teapot’, ’round bird’, ’teddybear’, 504

’thin bird’, ’tortoise plushy’, and ’wooden pot’. 505

CEL-Faces is derived from the high-resolution CelebA-HQ 506

dataset [89]. We select seven identities, each with a minimum 507

of 20 samples, based on the highest number of available 508

images. These celebrity identities serve as unique conceptual 509

entities for our incremental learning task. The continual learn- 510

ing sequence comprises ’#1 woman’, ’#2 man’, ’#3 man’, ’#4 511

man’, ’#5 man’, ’#6 woman’, and ’#7 woman’. 512

CEL-Styles features 1, 207 images representing 6 distinct 513

artistic styles, collected from Wikiart [90]. The dataset show- 514

cases works by renowned artists representing various art move- 515

ments, including Neo-impressionism, Impressionism, Post- 516

Impressionism, Mathematical art, Russian Revivalism, and 517

Modernism. Each image is accompanied by a descriptive 518

caption. The dataset is split into training and validation sets 519

using an 8:2 ratio for each artist. The sequence of continual 520

learning comprises ‘Georges Seurat’, ‘Konstantin Korovin’, 521

‘Maurice Prendergast’, ‘M.C. Escher’, ‘Boris Kustodiev’, and 522

‘Marc Chagall’. 523

B. Metrics for Evaluation 524

The CEL task encompasses the requirements of both con- 525

tinuous learning and T2I generation. Existing metrics for 526

both of these two tasks are insufficient for comprehensive 527

evaluation. To comprehensively assess the performance of 528

CEL, we integrate the T2I metrics into continuous learning 529

scenarios to form a (single-stage) performance indicator and 530

then derive two CEL performance metrics. 531

The Entity Generation Performance Indicator (EGI, denoted 532

as ρ) measures the performance during a single learning 533

session. We define ρ as the average of three commonly used 534

T2I generation metrics [3], [6], [38]: the DINO Score, the 535

CLIP-I Score, and the CLIP-T Score. 536

The DINO and CLIP-I scores assess visual similarity, 537

measuring the similarity between features of the generated 538
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images and the target images using DINO [91] and CLIP [32],539

respectively. The CLIP-T Score evaluates textual similarity,540

defined as the average cosine similarity between the CLIP541

features of the generated images and their corresponding text542

prompts. Formally, ρji denotes the performance of the model543

on the i-th task after learning j sessions. Based on ρ, we define544

two metrics:545

Incremental Concept Accuracy (ICA) measures the genera-546

tion performance of new entities after the model has completed547

all continual learning sessions. It is defined as:548

ICA =
1

S

S∑
i=1

ρSi , (5)

where S is the total number of continual learning sessions.549

Incremental Concept Forgetting (ICF) quantifies the de-550

crease in performance on previously learned concepts after551

learning new ones. It is defined as:552

ICF =
1

S − 1

S−1∑
i=1

∣∣ρii − ρSi
∣∣ , (6)

where ρii is the performance on the i-th task immediately after553

learning it, and ρSi is the performance on the i-th task after554

all sessions have been completed.555

V. EXPERIMENTS556

In this section, we present a comprehensive evaluation of557

our proposed CEAL approach for continual concept learning,558

encompassing quantitative and qualitative analysis.559

A. Evaluation Setup560

We implemented baselines of continual learning methods561

for CEL task: generative replay (Replay), EWC [61] and C-562

LoRA [82]. Additionally, we report the performance of state-563

of-the-art personalization methods, including Textual Inversion564

(TI) [7], DreamBooth (DB) [6], ED-LoRA [40] and Custom565

Diffusion (CD) [38]. We also compare our method with566

LoRA [15], using a rank of r = 8 for each concept. We train567

independent LoRA adapters for each entity and keep them in568

memory, which serves as a potential upper bound for CEL569

and offers additional context for our results. For CEAL, we570

set rfinal = 8, which means that the maximum rank obtained571

by CEAL is consistent with that of LoRA with r = 8.572

B. Implementation Details573

We conducted our experiments using Stable Diffusion574

v1.5 [3] as the base model. The training process utilized the575

Mean Squared Error (MSE) loss function, and the LoRA was576

integrated into all attention layers 16 of the denoising U-Net577

architecture. Superlora begins with an initial rank of 1, which578

is progressively incremented by 1 after every 1, 000 training579

iteration, resulting in a final rank (rfinal) of 8 after 8, 000580

iterations. Training was carried out with a batch size of 4. For581

optimization, we used the AdamW optimizer with a learning582

rate of 1×10−4 and a weight decay of 0.01. All input images583

were preprocessed to a resolution of 512× 512 pixels.584

For the search optimizer, we employ Simulated Annealing 585

(SA), as presented in Algorithm 1. In SA, a solution is a 586

sequence of rank values, where each value is selected for a 587

corresponding layer in Superlora. The length of each solution 588

is set to 16, corresponding to the 16 block layers in the 589

denoising U-Net of SD. We initialize the SA parameters with 590

an initial temperature (T0) of 100, a cooling rate (αSA) of 591

0.95, and a total number of iterations (NI ) of 1000. Our 592

search space is defined as the set {0, 1, 2, 4, 6, 8}, meaning that 593

each element in a solution can take on one of these values. 594

The SA algorithm explores this designated space to find the 595

optimal solution. The fitness function of SA is determined 596

by the objective function L. Given a specific solution, we 597

first extract the LoRA from Superlora with the corresponding 598

ranks. Then we merge the extracted LoRA into the SD model 599

and generate several images (specifically, 4 images per prompt, 600

using prompts listed in the Supplementary Material). These 601

images have dimensions of 512×512 pixels, a guidance scale 602

of 7.5, and 50 sample steps. The seeds for sampling are also 603

fixed. In our main results, we simply set the hyperparameters 604

α, β, and γ in the objective function to 100, 0.00001, and 0.1, 605

respectively, across all benchmarks. The purpose of this setting 606

is to normalize the magnitudes of these objective values to the 607

same scale, ensuring a balanced contribution from each term 608

during the optimization process. This serves as a standardized 609

baseline, and with minimal tuning, the search results can be 610

adapted to meet specific requirements. 611

C. Main Qualitative Results 612

To evaluate the effectiveness of our continual learning 613

approach, we conducted qualitative assessments for single- 614

concept fidelity and multi-concept compositionality. 615

Figure 4 presents a visual comparison of different methods 616

on the CEL-Faces dataset. The images shown are for the final 617

three identities learned after all methods completed the full 618

sequence of seven continual learning sessions. The results 619

clearly highlight the limitations of existing approaches. For 620

instance, the DB baseline suffers from complete mode col- 621

lapse, failing to generate any coherent images. Other methods, 622

while avoiding outright collapse, exhibit significant forgetting, 623

producing faces that bear little resemblance to the target 624

identities. In stark contrast, our method (CEAL) successfully 625

generates high-fidelity images that are visually consistent 626

with the target subjects, demonstrating its superior ability to 627

mitigate catastrophic forgetting. 628

We further challenged the models with a multi-subject gen- 629

eration task on the CEL-Objects dataset, with results displayed 630

in Figure 5. This evaluation was performed after the models 631

had continually learned all 15 distinct entities. Although the 632

CEL-Objects dataset primarily consists of simple, distinct 633

items, and methods like TI and LoRA can achieve high- 634

fidelity representations for single entities, they face significant 635

challenges in multi-concept generation. This limitation likely 636

stems from their training strategies, which do not explicitly 637

optimize for the simultaneous generation of multiple entities. 638

In contrast, our proposed method, CEAL, excels in this 639

complex task. It not only generates high-quality images that 640
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TITargets DB LoRA

CD ED-LoRA C-LoRA CEAL

Fig. 4: Visualizations of continual generation results on CEL-Faces. We present visualizations of generated images from
various methods for newly learned entities upon completion of all 7 continual learning sessions.

accurately depict newly learned entities but also seamlessly641

integrates them with previously learned concepts. As shown,642

our approach successfully captures the complex interactions643

between concepts in a single frame, demonstrating remarkable644

performance in multi-concept compositional generation. Ad-645

ditional qualitative results are provided in the supplementary646

material.647

D. Main Quantitative Results648

Table I presents a comparative analysis of ICA and ICF649

across three benchmarks: CEL-Objects, CEL-Faces, and CEL-650

Styles. The primary focus of ICA is to evaluate the fidelity of651

new entities after continual learning, whereas ICF measures652

the degree of forgetting after learning new entities.653

Methods such as Replay, EWC, and DB sequentially fine-654

tune the denoising network without increasing the number of655

parameters (#P ). TI only requires adding a single token, so its656

#P is almost negligible. Although these methods incorporate657

knowledge replay and regularization to prevent forgetting,658

they still exhibit inferior performance compared to parameter659

expansion methods, as indicated by the increase in ICF .660

While TI generally performs well on CEL-Faces and CEL-661

Styles benchmarks with no forgetting problem, its performance662

is suboptimal on the more challenging CEL-Objects dataset.663

This may indicate that learning human faces and art styles664

is noticeably easier for these methods than CEL-Objects,665

possibly due to the T2I model having a more intuitive grasp666

of these concepts. Our method significantly outperforms these667

approaches without requiring additional parameters.668

For methods that expand parameters for each new entity,669

we report the average increase in parameters (#P ). LoRA670

increases parameters by 2.59M per session, CD requires an 671

increase of 19.17M parameters, and ED-LoRA needs 0.81M 672

per session. Although ED-LoRA and CD both employ LoRA 673

fusion strategies, their fusion is centralized, meaning that when 674

generating multiple concepts together, they merge LoRAs for 675

better results but must keep all independent LoRAs in memory. 676

C-LORA merges LoRAs together but keeps separate from the 677

base model, resulting in a small parameter increase of 0.78M 678

per entity, as reported in their paper. CEAL significantly 679

outperforms these existing approaches without any additional 680

parameters. This success can be attributed to our innovative 681

multi-objective searching strategy, which strikes a remarkable 682

balance between performance enhancement and parameter 683

efficiency. 684

E. Ablation Studies 685

Table II presents an ablation study on the impact of the main 686

components of CEAL in terms of ICA. We individually re- 687

move each main component from CEAL to assess its influence. 688

Our full CEAL significantly outperforms the Naive LoRA 689

Merging baseline (48.12), which highlights the effectiveness 690

of CEAL’s overall design. 691

We first evaluate CEAL’s core architectural and training 692

strategies. Replacing the entire Superlora structure with a 693

standard fixed max-rank LoRA, upon which our search process 694

is then applied (CEAL w/o Superlora), reduces performance 695

to 58.95. This underscores Superlora’s inherent advantage in 696

facilitating the discovery of optimal layer-wise configurations. 697

Similarly, omitting the Dynamic Rank-Increasing Strategy dur- 698

ing Superlora training (CEAL w/o Dynamic Rank-Increasing) 699

results in an ICA score of 59.12, confirming this strategy’s 700
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id12 teddybear sitting 
in front of id1 barn

id12 teddybear and
id11 bird on beach

id6 dog wearing
sunglasses.

id6 dog wearing
jacket.

id6 dog standing with 
id2 cat in room

id5 teapot and
id10 teapot on table

Fig. 5: Visualization of multi-subject generation on CEL-Objects. We show the results of multi-subject generation on
CEL-Objects after all competing methods have completed 15 continual sessions. Entities are marked by their identifiers [id],
with their target samples provided at the bottom and prompts at the top.

contribution to effective LoRA learning. Constraining the701

search to a Uniform Rank across all layers, as opposed to702

distinct layer-wise ranks (CEAL w/o Layer-wise Ranks), not703

only leads to suboptimal performance with an ICA of 60.12704

but also potentially increases parameter count due to less705

efficient allocation. Finally, substituting the SA Optimizer706

with a random search mechanism (CEAL w/o SA Optimizer)707

causes a substantial performance drop to 53.89, accompanied708

by high variance. This result affirms the critical role of709

Simulated Annealing in effectively and consistently navigating710

the complex search space of LoRA configurations.711

Next, we individually remove each of the three search712

criteria—Human Preference Metric, Memory Cost Metric, and713

Concept Similarity Metric—and perform the search each time.714

The Concept Similarity Metric proves to be the most crucial715

component in the CEAL method, as removing it results in a716

substantial accuracy drop of 12.30. This is mainly because717

when only two metrics remain, the search process tends to718

select the LoRA with the smallest number of parameters,719

which may not align with the objectives of the CEL.720

Finally, investigating the merging process, we found that721

applying the optimized LoRAs independently without merging 722

them into the base model (CEAL w/o Merging) achieves an 723

ICAnew of 65.25±0.76. This is slightly higher than the full 724

CEAL with merging, suggesting a marginal trade-off between 725

peak concept fidelity and the parameter efficiency gained by 726

merging. However, the full CEAL’s merging provides the 727

significant benefit of zero additional parameters post-learning. 728

Then we study the impact of the main hyperparameters 729

rfinal , ν, α, β, and γ in Fig. 6. rfinal constrains the maximum 730

LoRA rank that can be searched for each entity. The results 731

show that the performance is poor when rfinal = 1, indicating 732

that the rank of LoRA may be too limited to learn LoRA 733

sufficiently. Interestingly, the performance is suboptimal when 734

rfinal = 32. This result supports our claim that a large 735

search space is difficult to train, and it is essential to design 736

mechanisms that ensure Superlora is adequately trained and to 737

develop search algorithms with better evaluation metrics. ν de- 738

termines the training steps required before adding a new rank 739

to the Superlora. The results demonstrate that using 1000 steps 740

as the increment is sufficient for achieving good performance, 741

and the model’s performance is not highly sensitive to the 742
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TABLE I: Results for all benchmarks.

Datasets CEL-Objects CEL-Faces CEL-Style
Method #P (↓) ICA (↑) ICF (↓) ICA (↑) ICF (↓) ICA (↑) ICF (↓)
LoRA 2.59M 62.38±0.42 - 57.32±0.83 - 41.55±0.10 -
CD 19.17M 58.86±1.22 - 55.91±1.22 - 41.47±0.13 -
ED-LoRA 0.81M 55.35±0.83 - 58.77±0.44 - 40.33±0.20 -
C-LoRA 0.78M 61.94±0.30 6.12±0.49 57.48±0.29 2.83±0.23 41.45±0.48 1.03±0.09

TI 0.0 48.61±1.38 - 59.33±1.25 - 38.30±0.42 -
Replay 0.0 27.27±6.97 25.36±3.10 14.22±0.29 8.84±0.36 20.88±1.79 5.98±0.72

EWC 0.0 49.15±0.22 12.39±1.28 56.63±0.73 4.84±0.89 37.11±0.83 1.83±0.22
DB 0.0 32.58±5.08 38.07±2.72 49.02±0.30 4.61±0.62 41.99±0.40 1.01±0.29

CEAL 0.0 63.74±0.31 9.12±0.88 59.01±0.73 2.71±0.72 45.21±0.53 1.04±0.04

������ �

� � �

Fig. 6: Impact of rfinal , ν, α, β, and γ on CEL-Objects.

TABLE II: Ablation study on the main components of CEAL
on CEL-Objects.

Component Variant ICAnew
Naive LoRA Merging 48.12±1.31

CEAL 63.74±0.31

CEAL w/o Superlora (Fixed Max-Rank LoRA + Search) 58.95±0.69

CEAL w/o Dynamic Rank-Increasing 59.12±0.69

CEAL w/o Layer-wise Ranks (Uniform Rank Search) 60.12±0.40

CEAL w/o SA Optimizer (e.g., Random Search) 53.89±10.34

CEAL w/o Lhpm (Human Preference Metric) 60.48±0.34

CEAL w/o Lmcm (Memory Cost Metric) 62.89±0.75

CEAL w/o Lcsm (Concept Similarity Metric) 51.44±0.26

CEAL w/o Merging (Independent Optimized LoRAs) 65.25±0.76

choice of ν. Even with smaller or larger step sizes, the model743

still maintains relatively good accuracy. For hyperparameters744

α, β, and γ that balance the searching objective, we find that745

although there are fluctuations and impacts, the variations are746

not significant.747

F. Computational Costs748

Training and optimizing Superlora for each concept requires749

roughly 2 gpu hours on a single Nvidia RTX 4090 GPU.750

The subsequent search phase for optimal rank configura-751

tions, however, is considerably more time-consuming. The752

dominant factor in this cost is the image generation required753

to evaluate each candidate solution presented by the SA754

optimizer. Other operations, such as extracting specific LoRA755

modules from the Superlora backbone or calculating aesthetic756

and CLIP scores, have a negligible computational overhead757

in comparison. For each prompt used in the evaluation, we758

generate 4 images, a process that takes approximately 4.5759

seconds on an NVIDIA RTX 4090. To illustrate, consider 760

the CEL-Objects benchmark, where each concept is typically 761

evaluated using 20 distinct prompts. With the SA optimizer 762

set to a maximum of NI = 1000 iterations, evaluating one 763

candidate solution (i.e., 20 prompts) takes 20 × 4.5s = 90s. 764

This would lead to a maximum theoretical search duration of 765

90s/iteration × 1000 iterations = 90, 000 seconds, or approxi- 766

mately 25 GPU hours per concept. 767

However, in practice, the SA algorithm often converges 768

to a satisfactory solution well before reaching the maximum 769

iteration limit. Furthermore, if the same rank configuration is 770

proposed multiple times by the SA optimizer, its previously 771

computed fitness score can be directly reused, avoiding re- 772

dundant image generation. Due to these factors, the average 773

search time per concept is significantly lower, typically around 774

4 GPU hours on the same hardware. 775

VI. CONCLUSION 776

This paper introduces the concept of Continual Conceptual 777

Entity Learning (CEL) for pre-trained T2I models. We intro- 778

duce Superlora, a search space to organize potential LoRA 779

configurations into a comprehensive set. To provide optimal 780

customized LoRA rank configurations reasonably, we propose 781

a novel dynamic rank-increasing strategy for training Super- 782

lora. We then use an efficient optimizer to continuously search 783

for the optimal LoRA in line with multiple competing crite- 784

ria. In addition, three comprehensive evaluation metrics and 785

benchmarks for CEL are introduced. Extensive experiments 786

on three benchmarks demonstrate the effectiveness of CEAL. 787

However, it is worth noting that the proposed method may 788

introduce additional computational overhead due to the search 789



SUBMISSION TO IEEE TRANSACTIONS ON MULTIMEDIA, SEPTEMBER 2025 11

process. On a positive note, our approach enhances parameter790

efficiency, potentially making AI models more accessible by791

reducing storage resource requirements.792

Furthermore, evaluating CEAL on more diverse and chal-793

lenging large-scale real-world datasets constitutes an important794

direction for future work to more broadly assess its general-795

ization capabilities and practical applicability.796
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[72] A. Douillard, A. Ramé, G. Couairon, and M. Cord, “Dytox: Trans- 1070

formers for continual learning with dynamic token expansion,” in 1071

Proceedings of the IEEE/CVF Conference on Computer Vision and 1072

Pattern Recognition, 2022, pp. 9285–9295. 1073

[73] Y. Wang, Z. Ma, Z. Huang, Y. Wang, Z. Su, and X. Hong, “Isolation 1074

and impartial aggregation: A paradigm of incremental learning without 1075

interference,” in Proceedings of the AAAI Conference on Artificial 1076

Intelligence, vol. 37, no. 8, 2023, pp. 10 209–10 217. 1077

[74] S. Yan, J. Xie, and X. He, “Der: Dynamically expandable 1078

representation for class incremental learning,” in 2021 IEEE/CVF 1079

Conference on Computer Vision and Pattern Recognition (CVPR). 1080

Los Alamitos, CA, USA: IEEE Computer Society, jun 2021, pp. 1081

3013–3022. [Online]. Available: https://doi.ieeecomputersociety.org/10. 1082

1109/CVPR46437.2021.00303 1083

[75] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture 1084

search,” in International Conference on Learning Representations, 2018. 1085

https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00303
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00303
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00303


SUBMISSION TO IEEE TRANSACTIONS ON MULTIMEDIA, SEPTEMBER 2025 13

[76] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture1086

search on target task and hardware,” in International Conference on1087

Learning Representations, 2018.1088

[77] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su, V. Perot,1089

J. Dy, and T. Pfister, “Learning to prompt for continual learning,” in1090

Proceedings of the IEEE/CVF Conference on Computer Vision and1091

Pattern Recognition, 2022, pp. 139–149.1092

[78] Z. Wang, Z. Zhang, S. Ebrahimi, R. Sun, H. Zhang, C.-Y. Lee, X. Ren,1093

G. Su, V. Perot, J. Dy et al., “Dualprompt: Complementary prompting for1094

rehearsal-free continual learning,” in European Conference on Computer1095

Vision. Springer, 2022, pp. 631–648.1096

[79] Y. Wang, Z. Huang, and X. Hong, “S-prompts learning with pre-trained1097

transformers: An occam’s razor for domain incremental learning,” Ad-1098

vances in Neural Information Processing Systems, vol. 35, pp. 5682–1099

5695, 2022.1100

[80] J. S. Smith, L. Karlinsky, V. Gutta, P. Cascante-Bonilla, D. Kim,1101

A. Arbelle, R. Panda, R. Feris, and Z. Kira, “Coda-prompt: Contin-1102

ual decomposed attention-based prompting for rehearsal-free continual1103

learning,” in Proceedings of the IEEE/CVF Conference on Computer1104

Vision and Pattern Recognition, 2023, pp. 11 909–11 919.1105

[81] J. S. Smith, Y.-C. Hsu, Z. Kira, Y. Shen, and H. Jin, “Continual diffusion1106

with stamina: Stack-and-mask incremental adapters,” in Proceedings of1107

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,1108

2024, pp. 1744–1754.1109

[82] J. S. Smith, Y.-C. Hsu, L. Zhang, T. Hua, Z. Kira, Y. Shen, and H. Jin,1110

“Continual diffusion: Continual customization of text-to-image diffusion1111

with c-lora,” Transactions on Machine Learning Research.1112

[83] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”1113

Advances in neural information processing systems, vol. 33, pp. 6840–1114

6851, 2020.1115

[84] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”1116

in International Conference on Learning Representations, 2020.1117

[85] Y. Frenkel, Y. Vinker, A. Shamir, and D. Cohen-Or, “Implicit style-1118

content separation using b-lora,” in European Conference on Computer1119

Vision. Springer, 2024, pp. 181–198.1120

[86] V. Shah, N. Ruiz, F. Cole, E. Lu, S. Lazebnik, Y. Li, and V. Jampani,1121

“Ziplora: Any subject in any style by effectively merging loras,” in1122

European Conference on Computer Vision. Springer, 2024, pp. 422–1123

438.1124

[87] shunk031, “simple-aesthetics-predictor: Clip-based aesthetics predictor1125

inspired by the interface of huggingface transformers,” 2023. [Online].1126

Available: https://github.com/shunk031/simple-aesthetics-predictor1127

[88] Y. Kirstain, A. Polyak, U. Singer, S. Matiana, J. Penna, and O. Levy,1128

“Pick-a-pic: An open dataset of user preferences for text-to-image1129

generation,” Advances in neural information processing systems, vol. 36,1130

pp. 36 652–36 663, 2023.1131

[89] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing1132

of gans for improved quality, stability, and variation,” in International1133

Conference on Learning Representations, 2018.1134

[90] B. Saleh and A. Elgammal, “Large-scale classification of fine-art paint-1135

ings: Learning the right metric on the right feature,” 05 2015.1136

[91] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and1137

A. Joulin, “Emerging properties in self-supervised vision transformers,”1138

in Proceedings of the IEEE/CVF international conference on computer1139

vision, 2021, pp. 9650–9660.1140

VII. BIOGRAPHY SECTION1141

Yabin Wang received the Ph.D. degree from Xi’an1142

Jiaotong University, P. R. China, in 2025. He is1143

an Associate Researcher with Harbin Institute of1144

Technology (HIT). His research interests include1145

continual learning, multi-modal learning and deep-1146

fake detection.1147

1148

Xiaopeng Hong (Senior Member, IEEE) received 1149

his Ph.D. degree from Harbin Institute of Tech- 1150

nology (HIT), P. R. China, in 2010. He is cur- 1151

rently a professor at HIT. He has authored over 1152

80 publications in leading journals and conferences, 1153

including IEEE T-PAMI, TIP, PIEEE, CVPR, ICCV, 1154

NeurIPS, AAAI, and ACM MM. His research on 1155

subtle facial movement analysis has been featured 1156

by international media such as MIT Technology 1157

Review. He is a co-author of the Top Paper Award 1158

at ACM Multimedia 2022 and the IEEE Finland 1159

Section Best Student Conference Paper in 2020. His current research interests 1160

include multi-modal learning, continual learning, and model interpretability. 1161

Zhiheng Ma (Member, IEEE) received the PhD de- 1162

gree from Xi’an Jiaotong University, in 2021. He is 1163

a research assistant professor with the Shenzhen In- 1164

stitute of Advanced Technology, Chinese Academy 1165

of Sciences (SIAT). He has authored articles in 1166

journals and conferences, such as IEEE Transactions 1167

on Image Processing, CVPR, ICCV, and AAAI. 1168

His current research interests include incremental 1169

learning, crowd counting, and novelty detection. 1170

1171

Zhou Su (Senior Member, IEEE) has authored 1172

or coauthored technical papers, including top jour- 1173

nals and top conferences, such as the IEEE Jour- 1174

nal on Selected Areas in Communications, IEEE 1175

Transactions on Information Forensics and Security, 1176

IEEE Transactions on Dependable and Secure Com- 1177

puting, IEEE Transactions on Mobile Computing, 1178

IEEE/ACM Transactions on Networking, and IN- 1179

FOCOM. His research interests include multimedia 1180

communication, wireless communication, and net- 1181

work traffic. He is an associate editor for the IEEE 1182

Internet of Things Journal,IEEE Open Journal of the Computer Society, and 1183

IET Communications. 1184

Jinpeng Zhang received the Ph.D. degree from 1185

the Institute of Automation, Chinese Academy of 1186

Sciences, Beijing, China. He works for the Intel- 1187

ligent Science & Technology Academy Limited of 1188

CASIC. His research interests include deep learning 1189

and multi-modal learning. 1190

1191

Zhiwu Huang received his Ph.D. in Computer 1192

Science and Technology from the University of 1193

Chinese Academy of Sciences in 2015. He then 1194

worked as a Postdoctoral and Guest Researcher in 1195

the Computer Vision Lab (CVL) at ETH Zurich 1196

from September 2015 to July 2021. From September 1197

2021 to December 2022, he served as an Assis- 1198

tant Professor of Computer Science at Singapore 1199

Management University. He is currently a Lecturer 1200

(Assistant Professor) in the Vision, Learning, and 1201

Control (VLC) research group at the University 1202

of Southampton. His research interests include Computer Vision, Machine 1203

Learning, Generative Artificial Intelligence, and Geometric Deep Learning. 1204

https://github.com/shunk031/simple-aesthetics-predictor

	Introduction
	Related Works
	Text-to-image Personalization
	Continual Learning

	Methods
	Preliminary and Problem Formulation
	Empirical Analysis of LoRA
	Continual Entity Adapter Learning Framework
	Superlora Structure and Efficient Training Strategy
	Searching with Multi-objective Criteria

	Benchmark Design and Construction
	Datasets Collection
	Metrics for Evaluation

	Experiments
	Evaluation Setup
	Implementation Details
	Main Qualitative Results
	Main Quantitative Results
	Ablation Studies
	Computational Costs

	Conclusion
	References
	Biography Section
	Biographies
	Yabin Wang
	Xiaopeng Hong
	Zhiheng Ma
	Zhou Su
	Jinpeng Zhang
	Zhiwu Huang


