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Abstract

In recent years, neural architecture search (NAS) has drawn increasing attention in the
field of computer vision. While state-of-the-art methods apply an architecture search
on the Euclidean manifold, this project adapts the NAS problem to Lie Groups. The
backbone of our implementation is the rotation cell which operates on Lie Group data
and preserves the manifold properties. In order to instantiate a rotation cell, we introduce
a new search space, containing several candidate operations to optimally process the
input data. The cell is then built upon a mixture of the candidate operations. Instead of
optimizing over a discrete and non-differentiable search space, our NAS model relies on the
continuous relaxation of the search space. This enables us to apply standard optimization
techniques and obtain a suitable network architecture. Experimental results show that our
new model performs better at skeletal-based human action recognition than the state-of-
the-art classification network LieNet. Thanks to the simultaneous architecture and model
weights optimization, the training duration also is reduced.
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Chapter 1

Introduction

3D human action recognition has become more popular in recent years. Especially for
autonomous robotic systems that interact with environments where humans are located,
it is crucial to detect human activities reliably. To tackle this problem, [1], [21] and [22]
represent human movements by skeletal data which resides on a Lie group, i.e., a non-
Euclidean manifold. Action recognition models proposed in [1], [21] and [22] are rather
slow and cannot be used for real-time applications. Furthermore, the proposed models are
limited to linear learning schemes and apply two-step systems that typically perform worse
than end-to-end learning schemes. Therefore, deep learning models are more suitable
thanks to their ability to perform non-linear computations. The first neural network
architecture that incorporates the Lie group structure is LieNet [6]. This classifier has
achieved state-of-the-art performances for some 3D human action recognition benchmarks,
one of which is the G3D Gaming data set. Generally, designing such deep networks
requires a lot of time, effort, and domain expertise. For this reason, researchers have
started developing algorithms to automate the process of neural architecture design [23]
[24] [9] [15] [10] [19]. Despite the great potential of these neural architecture search
(NAS) algorithms, they are limited to handle architectures with Euclidean operations
and representations. In this project, we want to adapt the NAS process to Lie Groups.
For this purpose, we follow the SPDNetNAS [18] implementation; the lately released
NAS algorithm for SPD-manifold networks, i.e., models that deal with symmetric positive
definite matrices as input data. The motivation of this project is to run an automated
neural architecture search that results in a new model with a performance at least as
high as LieNet’s one. Our NAS problem requires an adaptation of the computation cell
definition as well as a new search space containing Lie group candidate operations. Same
as [10] and [18], we model the basic architecture cell with a specific directed acyclic graph
(DAG). In our case, each node is a Lie group representation, and each edge corresponds
to a Lie group operation. Our solution relies on the continuous relaxation of the defined
search space, and therefore, we can employ a gradient descent approach to find a suitable
architecture. The new model is evaluated on the G3D gaming data set and outperforms
LieNet in terms of test accuracy. Our works makes the following contributions:

• We extend LieNet by a batch normalization and an average pooling layer. The input
data to these layers consists of tuples of rotation matrices. With the new operations,
we can construct a better generalizing model and hence leverage the performance.
In addition, we have more candidate operations for the architecture search.

• We introduce a NAS problem adapted to Lie group data. The resulting model has
a higher accuracy than LieNet on the G3D gaming data set, and in future it can be

1



used for different data sets as well.

We start by presenting the background and relevant work that we build up on in this work.
Afterwards, we introduce new operations to extend the current framework and define the
neural architecture search problem of Lie Groups. Then, we describe the approach that
leads us to the solution of the specified problem. In the last part, the results are presented
and discussed.
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Chapter 2

Background

This chapter provides the necessary background on Lie groups which is used in the re-
mainder of the thesis. Furthermore, we present the rotation layers used in LieNet which
are analogous to standard convolutional neural network layers (e.g. convolution and pool-
ing). In the last section, we introduce the concept of neural architecture search along with
the implementation of DARTS.

2.1 Lie group and SO(3)

A Lie group is a differentiable manifold with a group structure such that the group
multiplication and inverse-taking functions are smooth functions.
The 3D rotation group SO(3) is the group of all rotations around the origin of the euclidean
space R3. A matrix B is called a rotation matrix if it holds that B>B = and det(B) = 1.
Since SO(3) is a differentiable manifold and the multiplication of rotation matrices is a
smooth operation, the 3D rotation group is also a Lie group.

2.2 Operations on the SO(3) manifold

For simplicity, we denote the space of 3 x 3 rotation matrices as SO3 and the tangent space
at some point R0 as TR0SO3, where R0 2 SO3. The tangent space is a euclidean vector
space, meaning that operations defined on the euclidean space are valid in the tangent
space. In order to operate on the SO3 manifold, notions like origin, mean, identity or
distance need to be adapted to the non-euclidean space. We shortly provide an overview
of some operations that are used for this project.

2.2.1 Distance metric

Let X and Y be two points on SO3. The closed form expression for the distance between
X and Y is

dR(X, Y ) =k logm(X>Y ) kF (2.1)
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Figure 2.1: Visualization of a manifold M and its tangent space TCM at point C. [16]

where logm(.) is the matrix logarithm and k . kF is the Frobenius norm. Note that SO3 is
a unit sphere, meaning that the shortest path from X to Y on the manifold is not simply
a straight line, but a curve.

2.2.2 Exponential and Logarithmic map

Two important operations are the exponential and logarithmic map. The logarithmic map
is a mapping from SO3 to its tangent space, whereas the exponential map projects points
from the tangent space back to the manifold as illustrated in Figure 2.1. Formally,

logP (X) = logm(XP>
) with P,X 2 SO3, (2.2)

expP (Z) = expm(ZP>
) with Z 2 TPSO3 (2.3)

where logm(.) and expm(.) are the matrix logarithm and exponential, respectively.

2.2.3 Identity element

Every group G contains an identity element such that A · = A and ·A = A, where

A 2 G. The identity element of the Lie Group SO3 is the 3x3 identity matrix

2

4
1 0 0

0 1 0

0 0 1

3

5.

The tangent space at identity is called Lie algebra. We make use of the Lie algebra when
defining neural network layers operating on Lie Group data.

2.2.4 Definition of mean on SO(3)

Given a set of N 3x3 rotation matrices {Ri}Ni=1, we can compute the Riemannian barycen-
ter (G) as

G = argmin

Rµ2SO3

NX

i=1

d2R(Ri, Rµ). (2.4)

This expression is also referred as Fréchet mean [12] [2]. It can be extended to calculate
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the weighted Riemannian mean or weighted Fréchet mean

G = argmin

Rµ2SO3

NX

i=1

wid
2
R(Ri, Rµ), where wi � 0 and

NX

i=1

wi = 1. (2.5)

One method to approximate equation 2.2.4 is the Karcher flow [7]. The idea of this
algorithm is to map the rotation matrices from the manifold to the tangent space, compute
the euclidean mean on the tangent space and map it back to the manifold. It is a
computationally efficient method and the arising imprecisions are negligible. Algorithm
1 is taken from [17].

Algorithm 1 Karcher flow [7] to compute the Riemannian mean of N rotation matrices
Require: data points {Pi}iN , iterations K, step ↵
1: G P

iN Pi

2: for k  K do
3: G 1

N

P
iN logG(Pi)

4: G expG(↵G)

5: end for
6: return G

Figure 2.2: One iteration of the Karcher flow algorithm. The matrices Pi are mapped to the
tangent space at G(t). Then, the euclidean mean is computed and mapped back to the manifold,
yielding G(t+ 1). [4]

2.3 LieNet

LieNet is the state-of-the-art deep learning model that incorporates Lie Group structured
data. The goal of this project is to further improve the model. In the current framework,
there are three different rotation layers which are described in the next sections. In
addition, we expand the set of layers by two more operations such that we have more
variability in the architecture search phase. This section’s content is taken from [6].
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Figure 2.3: A colored image with its associated depth image and extracted skeleton. [3]

2.3.1 Lie group representation of Skeletal Data

Let S = (V,E) be a body skeleton, where V = {v1, ..., vN} denotes the set of body joints,
and E = {e1, ..., eM} indicates the set of edges, i.e. the body bones. One can describe the
coordinate system of em in the local coordinate system of en by rotating and translating
the former one. Since the translational component is superfluous, the relation between
two body parts is represented by a rotation matrix only. This means, we can compute a
rotation matrix Rm,n from em to the coordinate system of en. Analogously, Rn,m goes in
the opposite direction. To fully encode the relative geometry between em and en, both
Rm,n and Rn,m are used. In this way, a skeleton S at time t is represented by the tuple
(R1,2(t),R2,1(t), ...,RM�1,M(t),RM,M�1(t)), where M is the number of body parts, and
the number of rotation matrices at time t is 2M(M � 1).

2.3.2 RotMap Layer

Similar to classical convolutional neural networks, LieNet exhibits convolutional-like layers
which are called Rotation mapping layers or RotMap for short. RotMap layers transfrom
the input skeleton to a new one in a way such that the new skeleton is better aligned
and hence more suitable for classification. Formally, the application of a RotMap layer is
defined as

f (k)
r ((Rk�1

1 ,Rk�1
2 , ...,Rk�1

M̂
);Wk

1 ,W
k
2 , ...,W

k
M̂
)

= (Wk
1R

k�1
1 ,Wk

2R
k�1
2 , ...,Wk

M̂
Rk�1

M̂
)

= (Rk
1,R

k
2, ...,R

k
M̂
),

(2.6)

where ˆM = 2M(M�1) (M is the number of body parts in one skeleton), (Rk�1
1 ,Rk�1

2 , ...,Rk�1
M̂

) 2
SO3 ⇥ SO3... ⇥ SO3 is the input Lie group feature for one skeleton in the k-th layer,
Wk

i 2 R3⇥3 is the transformation matrix (connections weights), and (Rk
1,R

k
2, ...,R

k
M̂
) is

the resulting Lie group representation. In order to make sure that the features remain
on the Lie group SO3 ⇥ SO3 ⇥ ... ⇥ SO3 after applying one or more RotMap layers, the
transformation matrices (Wk

1 ,W
k
2 , ...,W

k
M̂
) are required to be rotation matrices. The

justification of this requirement is that SO3 is closed under matrix multiplication.

2.3.3 RotPooling Layer

As well-known in convolutional neural networks, it is useful and often even necessary to
reduce the dimensionality of the input data for computational feasibility reasons. The

6



pooling operation down-samples a feature map by summarizing local statistics in neigh-
borhoods within the feature map. The RotPooling layer adapts this concept to Lie group
based data. There are two different notions for neighborhood in the LieNet pipeline. The
first one is on the spatial level. Here, the Lie group features are pooled on each pair of
basic bones em, en in the i-th frame, which is represented by the two rotation matrices
Rk�1,i

m,n , Rk�1,i
n,m as explained before. The function of the max pooling is given by

f (k)
p ({Rk�1,i

m,n ,Rk�1,i
n,m }) = max({Rk�1,i

m,n ,Rk�1,i
n,m })

=

(
Rk�1,i

m,n , if ✓(Rk�1,i
m,n ) > ✓(Rk�1,i

n,m )

Rk�1,i
n,m , otherwise,

(2.7)

where ✓( · ) is the Euler angle representation which is defined as

✓(Rn,m) = arccos
✓
trace(Rn,m)� 1

2

◆
. (2.8)

The other pooling variant is on the temporal level. The purpose of the temporal pooling is
to obtain more compact representations for a motion sequence. Considering that a video
sequence often contains many frames, temporal pooling reduces the model complexity as
well. Formally, the second type of pooling is defined as

f (k)
p

⇣
{(Rk�1,1

1,2 ...Rk�1,1
M�1,M), ..., (Rk�1,p

1,2 ...Rk�1,p
M�1,M)}

⌘

=

⇣
max

⇣
{Rk�1,1

1,2 , ...,Rk�1,p
1,2 }

⌘
, ...,max

⇣
{Rk�1,1

M�1,M , ...,Rk�1,p
M�1,M}

⌘⌘
,

(2.9)

where M is the number of body parts in one skeleton, p is the number of video frames,
and the function max( · ) is defined in equation 2.7.

2.3.4 LogMap Layer

Due to the non-euclidean nature of the skeletal data, classifying curves on the Lie group
SO3 ⇥ ... ⇥ SO3 is a challenging task. In this regard, the LogMap layer is designed to
flatten the Lie group SO3 ⇥ ... ⇥ SO3 to its Lie algebra so3 ⇥ ... ⇥ so3. Using equation
2.2, this layer is defined as

f
(k)
l

⇣
(Rk�1

1 ,Rk�1
2 , ...,Rk�1

M̂
)

⌘

=

⇣
log (Rk�1

1 ), log (Rk�1
2 ), ..., log (Rk�1

M̂
)

⌘

=

⇣
logm(Rk�1

1 ), logm(Rk�1
2 ), ..., logm(Rk�1

M̂
)

⌘
.

(2.10)

One typical approach to calculate the matrix logarithm is via the eigenvalue decomposi-
tion logm(R) = Ulogm(⌃)U>, where R = U⌃U and logm(⌃) is the diagonal matrix
of the eigenvalue logarithms. One issue this method encounters is that the eigenvalues
of rotation matrices are complex, except for the case R = ± (positive or negative iden-
tity). That means, the LogMap layer would create complex values which is not desired for
classification. Furthermore, the matrix gradient calculation is computationally expensive
and hence consume too much time. One way to bypass these issues is to exploit the
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Figure 2.4: Illustration of the spatial pooling (a) ! (b) ! (c) and the temporal pooling (c) !
(d) type [6]

relationship between the logarithm map and the axis-angle representation:

logm(R) =

(
0 , if ✓(R)

✓(R)
2sin(✓(R)(R�R>

) , otherwise,
(2.11)

where ✓(R) is the angle of R as defined in equation 2.8. With this equation, the corre-
sponding matrix gradient can be easily derived by traditional element-wise matrix calcu-
lation.

2.3.5 Output Layers

After performing the LogMap layers, the outputs can be transformed into vector form and
concatenated directly frame by frame within one sequence due to their Euclidean nature.
There is the possibility of adding any regular layer such as rectified linear unit (ReLU)
layers and regular fully connected (FC) layers. For classification, a common softmax layer
is employed as final output layer. An overview of LieNet is found in figure 2.5

2.4 Neural Architecture Search

This section’s content is taken from [10] and [17].
Finding state-of-the-art neural network architectures requires a huge effort of human ex-
perts. For this reason, the demand for an automated architecture search has increased
substantially. Also the large availability and access to high performance computing sys-
tems has encouraged researchers to develop new algorithmic solutions. Despite their
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Figure 2.5: Conceptual illustration of the LieNet architecture. [6]

remarkable performance, earlier architecture search algorithms require thousands of GPU
days for training. Most of recent approaches involve training a SuperNet which incorpo-
rates many candidate sub-networks.
In this project we use one of the most promising SuperNet strategy called Differentiable
Architecture Search (DARTS). Instead of searching over a discrete set of candidate oper-
ations, DARTS uses a continuous search space, so that the architecture can be optimized
via gradient descent. The advantage of this method is the achievement of competitive per-
formance with the state of the art using orders of magnitude less computation resources.

DARTS represents the computation procedure for an architecture as a directed acyclic
graph. A cell is a directed acyclic graph consisting of an ordered sequence of N nodes.
Each node x(i) is a latent representation (e.g. a feature map in convolutional networks)
and each directed edge (i, j) is associated with some operation o(i,j) that transforms x(i).
Cells are assumed to have two input nodes and a single output node. The output of the
cell is obtained by applying a reduction operation (e.g. concatenation) to all the interme-
diate nodes. Each intermediate node is derived from all its predecessors.

x(j)
=

X

i<j

o(i,j)(xi
) (2.12)

For a set of candidate operations O, each operation represents some function o( · ) to be
applied to x(i). The mixing operation between a pair of nodes (i, j) is a linear combination
of the candidate operations, defined as

ō(i,j)(x) =
X

o2O

exp(↵
(i,j)
o )

P
o02O exp(↵

(i,j)
o0 )

o(x), (2.13)

where ↵(i,j) is the parametrization vector of the operation weights on edge (i, j). The
weights for operations on the edges, i.e ↵’s are updated using the validation set while the
weights of the architecture w’s are updated using a training set. The architecture and
operation mixing weights are updated using a bi-level optimization as shown in algorithm
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2.

Algorithm 2 DARTS bi-level optimization algorithm [7]
Create a mixed operation ō(i,j) parametrized by ↵(i,j) for each edge (i, j)

while not converged do
Update architecture ↵ by descending r↵Lval(w � ⇠rwLtrain(w,↵),↵)
(⇠ = 0 if using first-order approximation)
Update weights w by descending rwLtrain(w,↵)

end while
Derive the final architecture based on the learned ↵.

10



Chapter 3

LieNet extension

In this chapter, we extend LieNet by a batch normalization layer which is our first contri-
bution in this project. Afterwards, we define the NAS problem that is solved in chapter
4.

3.1 BatchNormalize Layer

Training a deep learning model is difficult because the distribution of each layer’s input
data changes during the training phase. This can slow down the training but it can also
lead to very high gradients. One widely used remedy for gradient explosion is the batch
normalization. The idea of batch normalization is to standardize the data before passing
it to a layer, resulting in a shorter training time of the overall network. The classical
batch normalization algorithm for euclidean data is shown in figure 3.1.

Figure 3.1: Batch Normalization algorithm for euclidean data [5]

We want to adapt this layer to the Lie group data. Algorithms 3 and 4 show the normal-
ization process on a Lie group for training and testing, respectively.
To summarize the concept, we first adjust the batch mean to be (identity matrix), then
we scale the data by s and at the end the batch mean is shifted from to g. Again, logm
and expm refer to the matrix logarithm and exponential, respectively.

11



Algorithm 3 Training step of normalization on a Lie group [5]
Input: A batch of samples S = {Xi}Ni=1; bias g 2 SO3; running mean M ; scale factor s > 0.
Output: Updated running mean M .

1: Compute batch mean Mb of {Xi}Ni=1 (using Karcher flow);
2: Update running mean M by Mb (using Karcher flow);
3: Xi  M�1

b Xi;
4: Xi  expm(s · logm(Xi));
5: Xi  gXi.

Algorithm 4 Testing step of normalization on a Lie group [5]
Input: A batch of samples S = {Xi}Ni=1; bias g 2 SO3; learned running mean M ;
scale factor s > 0.

1: Xi  M�1Xi;
2: Xi  expm(s · logm(Xi));
3: Xi  gXi;

At this point, we add the batch normalization layer to the original LieNet implementation.
The resulting model is called LieNetBN and is illustrated in figure 5.5.

3.2 Problem Definition

The scope of this project is to extend DARTS in a way such that we can run an archi-
tecture on Lie group data. [17] has adapted the DARTS framework to SPD valued data,
i.e. to the manifold of symmetric positive definite matrices. We try to remain close to
the SPDNetNAS [17] implementation. In a first step, the computation cell has to be
re-defined. It is important for the cell to operate on the SO3 manifold, meaning that the
output data of a cell lies on the Lie group. There are two types of cells. The first one
is called a normal cell and outputs a feature map of the same dimensions as the input,
whereas the second cell, also called reduction cell, reduces the dimensionality of the spa-
tial or temporal domain. In the second step, we introduce a new search space in order
to generate valid computation cells. Here, the operations must maintain the manifold
properties of the input data. In a last step, the mixing operation is adapted to the Lie
group data. Since we are not in the euclidean space, a mixing operation is not a linear
combination of the candidate operations any more because this would violate the SO3

properties.
Following the previous section, a rotation cell is a directed acyclic graph (DAG) composed
of an ordered number of nodes and edges, where each node is a latent representation of
the Lie group data and each edge corresponds to a valid candidate operation on the ro-
tation group (see Figure 3.2). Each edge is associated with a set of candidate Lie group
operations (OR) that transforms the Lie group valued latent representation from a source
node X

(i)
R to a target node X

(j)
R . The intermediate transformation between the nodes in

a rotation cell is defined as

X
(j)
R = argmin

X
(j)
R

X

i<j

d2R

⇣
O

(i,j)
R (X

(i)
R , X

(j)
R )

⌘
, (3.1)

where dR denotes the geodesic distance defined in equation 2.1. This transformation

12



result corresponds to the unweighted Fréchet mean of the predecessor nodes, so that the
mixing operations remain on the rotation group. With the new defined rotation cell and
its intermediate transformation we can propose a solution to the Lie group architecture
search problem.

Figure 3.2: (a) A rotation cell composed of 4 intermediate nodes, 2 input and 1 output nod.
Initially, the operations on the edges are unknown. (b) Mixture of candidate operations between
nodes. (c) Final architecture containing the learned mixing weights. [17]
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Chapter 4

NAS for Lie group networks

In this chapter we propose a solution to the Lie group architecture search problem, which
is a modification of [17] and [10]. First we introduce the search space and afterwards
describe the optimization method used to apply the SuperNet method.

4.1 Search space

Most of the candidate operations that form the search space are either taken directly from
chapter 2 or a combination thereof. We differentiate between two families of operations,
namely the normal and reduced ones. The RotMap and BatchNormalize layers are asso-
ciated to the normal operation family since they keep the output dimensions identical to
the input dimensions. The pooling layers, however, are in the family of the reduced oper-
ations because they change the dimensions of the feature maps. The operations cannot be
combined inter-familiarly because in this case the dimensions do not match. Obviously,
the normal operations are used in normal rotation cells and the reduced operations are
used in the reduced rotation cells. The candidate operations are defined as follows:

Figure 4.1: Illustration of the Max/Avg Pooling [17]

• RotMap: This operation comes in four different flavors, that is, a RotMap layer
combined with pre- or post activations, or batch normalization, as listed in table
4.1.

• Batch normal: This candidate operation enables us to apply a batch normalization
without RotMap layer.

• Skip normal: Forwards the input unchanged
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• None normal: It corresponds to the operation that returns identity matrices as
output, i.e., the notion of zero in the SO3 space.

• MaxPooling: Corresponds to LieNet’s RotPooling layer. As explained in chapter
2, this operation applies a conventional max pooling operation on the axis-angle
representation of the rotation matrices. Pooling can be done in spatial or temporal
domain.

• AvgPooling: Similar to the MaxPooling operation, our average pooling layer (Avg-
Pooling) replaces the max operation by the average operation. Especially in the
temporal domain, it can be beneficial to keep the average skeletal features values
instead of the maximum ones because the average value represents a sequence of
frames better. The AvgPooling layer is defined as

f (k)
a

⇣
{(Rk�1,1

1,2 ...Rk�1,1
M�1,M), ..., (Rk�1,p

1,2 ...Rk�1,p
M�1,M)}

⌘

=

⇣
avg

⇣
{Rk�1,1

1,2 , ...,Rk�1,p
1,2 }

⌘
, ..., avg

⇣
{Rk�1,1

M�1,M , ...,Rk�1,p
M�1,M}

⌘⌘
,

(4.1)

where M is the number of body parts in one skeleton, p is the number of video
frames, and the function avg( · ) is defined as

avg
�{Rk�1,1

m,n , ...,Rk�1,p
m,n }� = expm

 
1

p

pX

i=1

logm(Rk�1,i
m,n )

!
. (4.2)

A graphical illustration of max and average pooling can be found in Figure 4.1.

• Skip reduced: It divides the input into two smaller parts, applies a Max Pooling on
each part, and concatenates the results. Here, the output has a reduced dimension
in either the spatial or temporal domain.

Figure 4.2: Skip reduced operation

16



Operation Definition

RotMap_0 {RotMap}
RotMap_1 {RotMap, BatchNormalize}
RotMap_2 {RotMap, BatchNormalize, ReLU}
RotMap_3 {ReLU, RotMap, BatchNormalize}
Batch_normal {BatchNormalize}
Skip_normal {Output same as input}
None_normal {Return identity matrix}
MaxPooling_spatial {Spatial RotPooling}
MaxPooling_temporal {Temporal RotPooling}
AvgPooling_spatial {Spatial AvgPooling}
AvgPooling_temporal {Temporal AvgPooling}
Skip_reduced_spatial Ci = MaxPooling_spatial(Ri); i = 1, 2, Cout =

concat(C1, C2)

Skip_reduced_temporal Ci = MaxPooling_temporal(Ri); i = 1, 2,
Cout = concat(C1, C2)

Table 4.1: Input search space for the Lie group architecture search

4.2 SuperNet search

The optimal Lie group architecture search is done via an optimization over the parametrized
SuperNet. It stacks the rotation cells with the parametrized candidate operations from
our search space in a one-shot search manner. Since the defined search space is discrete,
we relax the categorical choice of a particular operation to a softmax over all possible
operation using the weighted Fréchet mean. Formally,

OR(XR) = argmin

Xµ
R

NlX

k=1

↵kd2R

⇣
O

(k)
R (XR), X

µ
R

⌘
= expXµ

"
(

NlX

k=1

↵k
)

�1
NlX

k=1

↵klogXµ(O
(k)
R (XR))

#

(4.3)

where O
(k)
R is the kth candidate operation between nodes, Xµ is the intermediate Fréchet

mean from equation 2.2.4, and Nl denotes the number of edges. As usual, the Fréchet
mean is computed using the Karcher flow algorithm. The weights are fed through a
softmax such that they sum up to 1. An example of a simplified mixed operation is
illustrated in Figure 4.3. We consider a cell consisting of three nodes, two input nodes
(1 and 2) and one output nodes (node 3). A mixed operation is computed on each input
node, where a candidate operation corresponds to an edge. Note that in this case the
search space contains only two candidate operations. Each candidate operation has a
weight ↵i_j, where i corresponds to the node index and j to the operation index. In
this example, it holds i, j 2 1, 2, and ↵1 = {↵1_1,↵1_2},↵2 = {↵2_1,↵2_2}. Different
from [17], we first compute the outputs of of the mixed operations applied to node 1 and
2 separately. Afterwards, we fuse the outputs by computing another Fréchet mean. In
this way, the dimensionality remains the same and the data is guaranteed to stay on the
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Lie group.

Figure 4.3: Illustration of a simplified mixed operation with two input nodes and one output
node. A mixed operation is applied to each input node separately and the outputs are combined
using the Fréchet mean in order to keep the dimensionality identical to the input.

Using equation 4.3, the architecture search is done by learning a set of variables ↵ =

{↵k, 8k 2 Nl}. We simultaneously learn the contribution of several possible operation
within all the mixed operations (w) and the corresponding architecture ↵. That means,
for a given w we optimize for ↵ and vice-versa, resulting in a bi-level optimization prob-
lem. The lower-level problem corresponds to the optimal weight parameters learned for
a given architecture ↵, i.e., wopt

(↵) using a training loss (EL
train(w,↵). The upper-level

optimization updates the variable ↵ given the optimal w using a validation loss (EU
val).

The bi-level optimization problem is defined as

minimize
↵

EU
val

�
wopt

(↵),↵
�
; subject to: wopt

(↵) = argmin

w
EL

train(w,↵) (4.4)

This approach leads to an optimal mixture of architecture. At the end of the optimiza-
tion, the discrete architecture is obtained by replacing each mixed operation O

(k)
R with

the most likely operation, i.e., o(k) = argmax

o(k)2O
↵
(k)
o .

Bi-level optimization: Solving this optimization problem is difficult because the inner
optimization is computationally very expensive. For this reason, we approximate equation
4.4 as follows:

r↵E
U
val

�
wopt

(↵),↵
� ⇡ r↵E

U
val

�
w � ⌘rwE

L
train(w,↵),↵

�
(4.5)

Here, ⌘ is the learning rate and r represents the gradient operator. In this case, the
gradients computation is adapted to the Lie group SO3, following [6]. Applying the chain
rule to equation 4.5 yields

r↵E
U
val(w̃,↵)� ⌘r2

↵,wE
L
train(w,↵)rw̃E

U
val(w̃,↵), (4.6)

where w̃ =  r

⇣
w � ⌘ ˜rwEL

train(w,↵
⌘

denotes the weight update on the SO3 manifold for
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the forward model. ˜rw and  r are the Riemannian gradient and the retraction operator,
respectively. The second term in equation 4.6 contains second order differentials with
high computationally complexity, therefore, using the finite approximation method, the
second term of equation 4.6 reduces to

r2
↵,wE

L
train(w,↵)rw̃E

U
val(w̃,↵) =

�r↵E
L
train(w

+,↵)�r↵E
L
train(w

�,↵)
�
/2�, (4.7)

where w±
=  r

⇣
w ± � ˜rw̃EU

val(w̃,↵)
⌘

and � is a small number set to 0.01/ k rw̃EU
val(w̃,↵) k2

[17] [10].
The pseudo code [17] of the bi-level optimization is shown in algorithm 5.

Algorithm 5 The proposed neural architecture search for adapted to Lie group data [17]
Require: Mixed operation OR which is parametrized by ↵k for each edge k 2 Nl;

while not converged do
Step 1: Update architecture ↵ using equation 4.5.
Step 2: Update w by solving rwEtrain(w,↵)

end while
Derive the final architecture based on the learned ↵. The operation at edge k is chosen by
argmax

o2OR

{↵k
o}
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Chapter 5

Experimental results

Our new models LieNetBN and LieNetNAS are evaluated on the gaming action dataset
G3D. This dataset contains 10 subjects performing 20 gaming actions: punch right, punch
left, kick right, kick left, defend, golf swing, tennis swing forehand, tennis swing backhand,
tennis serve, throw bowling ball, aim and fire gun, walk, run, jump, climb, crouch, steer
a car, wave, flap and clap [3]. Here, one sample consists of a video sequence of 100 frames
and each frame contains 342 rotation matrices, yielding an object of dimension (342, 100,
3, 3).

Figure 5.1: Initialization of the LieNetNAS architecture

LieNetNAS: As shown in figure 5.1, our configuration consists of a normal cell, a reduc-
tion cell, a RotMap layer and a AvgPooling layer, in this order. At the end, analogous
to the LieNet model, we use a LogMap to flatten the data, pass it to the fully connected
layer and feed it into the softmax classifier. In our framework, we use 4 nodes within a
cell which includes two input nodes, one intermediate node and one output node. The
inputs to a cell are preprocessed with a RotMap layer. The dataset contains 666 samples
in total and we assign 333 samples to each the training and test set, respectively. We train
the network with a batch size of 16 in order to not exceed the memory allocation limits.
Furthermore, we use momentum SGD to optimize the weights w, with initial learning
rate ⌘w = 0.025 (annealed down to zero following a cosine schedule without restart [11]),
momentum 0.9, and weight decay 3⇥10

�4, as in [10]. For both rotation cells, we initialize
the architecture variables equally, i.e., the ↵’s are distributed uniformly such that they
all have the same amount of importance. We use the Adam optimizer [8] for ↵, with
initial learning rate ⌘↵ = 3 ⇥ 10

�4, momentum � = 0.9 for both cells, and weight decay
10

�3. Training takes 6 CPU-hours for a total of 50 epochs. There was no computational
speedup when using a GPU. As visible in figure 5.2, the accuracies increase very fast at
the beginning because the learning rate for the weights w is rather high. As the number
of epochs augments, the learning rate diminishes and the accuracies stabilize. The abrupt
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Method G3D-Gaming
RBM+HMM [13] 86.40%

SE [14] 87.23%
SO [20] 87.95%

LieNet-0Block 84.55%
LieNet-1Block 85.16%
LieNet-2Blocks 86.67%
LieNet-3Blocks 89.10%
LieNetBN 90.4 %
LieNetNAS 90.9 %

Table 5.1: Test accuracies on the G3D-Gaming dataset.

changes in the accuracy curves between two epochs occur due to the architecture changing
in the corresponding epoch, i.e., an updated architecture can generalize much better or
worse than the previous one and hence the accuracy will rise or drop correspondingly.

Figure 5.2: Evolution of train and test accuracy for LieNetNAS

After running the architecture search, we trained the resulting model from scratch. Hereby,
following [6], the learning rate is fixed to � = 0.01 without momentum and the batch size
is again 16. In this case, there was no further increase of the test accuracy. Table 5.1
shows the recognition accuracies of several models. LieNetNAS has a slightly higher ac-
curacy than LieNet-3Blocks and LieNetBN.
As mentioned, we follow a cross-subject test setting, where half the subjects are used for
training and the other half are employed for testing [6]. All the results reported for this
dataset are averaged over 20 different combinations of training and testing datasets.
The learned reduction cell and normal cell are shown in figures 5.3 and 5.4, respectively.
LieNetBN: Our second model is depicted in figure 5.5. Similar to LieNet-3Blocks, it is
divided into three blocks, but in the second and third blocks we use the AvgPooling layer
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Figure 5.3: Learned reduction cell

Figure 5.4: Learned normal cell

and we also apply a batch normalization after the third RotPooling layer. At the end, the
data is flattened, passed to the fully connected layer and fed into the softmax classifier.
This configuration is trained with a learning rate fixed to � = 0.01, no momentum and
batch size 128. The introduction of the batch normalization in LieNetNAS and LieNetBN

Figure 5.5: LieNetBN architecture

leads to a re-distribution of the input data and hence to an improvement in accuracy.
Figure 5.6 shows an example skeleton sequence with label "tennis swing forehand". While
LieNet-3Blocks misclassified this sample as "punch right", our new models classified it
correctly.
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Figure 5.6: Training sample with label "tennis swing forehand". This example was misclassified
by LieNet-3Blocks, but classified correctly by LieNetBN and LieNetNAS.

24



Chapter 6

Conclusion & future work

The goal of this project is to develop a new human action recognition network using neural
architecture search and improve the existing model LieNet and its extension LieNetBN.
This objective has been fulfilled as the NAS model has a slightly higher accuracy than
the hand designed ones. Architecture search is realized by introducing computation cells
and a set of candidate operations which handle Lie group data such as rotation matrices.
Making use of the continuous relaxation of the search space, the architecture and model
weights can be optimized simultaneously using gradient descent. The new framework is
evaluated on the G3D Gaming dataset.
The main issue during training is the high memory allocation due to the fact that the
newly introduced LieNet layers are computationally expensive and need to be further
optimized. In addition, this restricts us to only stack two cells at most. One approach
to solve this issue is to split the training into multiple rounds, i.e., after each round the
current parameters are stored and afterwards reloaded in the next round. In this way
we avoid training interruption due to excessive memory allocation. The problem hereby
is that the learning rate scheduler starts from scratch in each training round, meaning
that the learning rate is not optimized as good as if we would train without interruption.
Some proposals for further improvement of the neural architecture search are:

• To optimize the LieNet layers in terms of time complexity and resource allocation

• To enlarge the current search space by non-linear operations

• To include more nodes within a computation cell

• To extend the architecture search to other data sets
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