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Abstract

Humans can communicate emotions through a plethora
of facial expressions, each with its own intensity, nuances
and ambiguities. The generation of such variety by means
of conditional GANs is limited to the expressions encoded in
the used label system. These limitations are caused either
due to burdensome labelling demand or the confounded la-
bel space. On the other hand, learning from inexpensive
and intuitive basic categorical emotion labels leads to lim-
ited emotion variability. In this paper, we propose a novel
GAN-based framework that learns an expressive and inter-
pretable conditional space (usable as a label space) of emo-
tions, instead of conditioning on handcrafted labels. Our
framework only uses the categorical labels of basic emo-
tions to learn jointly the conditional space as well as emo-
tion manipulation. Such learning can benefit from the im-
age variability within discrete labels, especially when the
intrinsic labels reside beyond the discrete space of the de-
fined. Our experiments demonstrate the effectiveness of the
proposed framework, by allowing us to control and gener-
ate a gamut of complex and compound emotions while us-
ing only the basic categorical emotion labels during train-
ing. Our source code is available at https://github.
com/stefanodapolito/GANmut.

1. Introduction
Facial expressions undoubtedly play a major role in the

non-verbal communication of human emotions. However,
the relationship between what is felt and the correspond-
ing expression is complex, and not yet fully understood.
When an emotion is externalized by facial muscle move-
ments, sometimes even different emotions lead to the same
expression [1, 11]. This is merely the beginning of the many
issues in understanding human emotions. Therefore, mod-
elling human emotions is a century-long ongoing topic of
study [30, 28, 11, 31, 17, 16, 18, 29]. In this process, sev-
eral psychological models for emotion representation have
been proposed, with no clear consensus among psycholo-
gists. At this point, one may wonder, what if we could

leverage machine learning for emotion modelling instead?
Existing emotion models rely upon psychologists, who

individually have limited observations and personal biases.
Machines, on the other hand, can potentially observe many
more images of the diverse emotions. The key question that
motivates us, maybe a little beyond the scope of this paper,
is, how can we make machines model emotions in a way
that is also interpretable to humans?

Before proceeding further, we first discuss the current is-
sues we perceive. If a categorical model, such as basic emo-
tions [10, 20, 27], is used to understand the lab controlled
posed expressions, there is almost no need for a new emo-
tion model1. On the contrary, understanding spontaneous
expressions challenges even the human experts2. One can
only expect a further deterioration of agreement if sponta-
neous expressions are annotated by non-experts. Therefore,
it seems hopeless to collect large-scale data relying upon the
categorical emotion model and its corresponding labels.

Several other emotion models also do exist [32]. Among
these, the most commonly used are compound emotions [8],
Valance-Arousal (VA) [31], and Action Units (AUs) [9].
These models, although not thoroughly studied, can be only
suspected to pose more problems due to not being intu-
itive to non-experts. In this regard, the categorical emotion
model is arguably the most intuitive one, as well as the most
inexpensive means of collecting the data [3]. This leaves us
with the necessity of developing a learning algorithm that
can learn from imperfect emotion labels. With a slight twist,
we ponder whether it is possible to learn the emotional la-
bel space itself, which can be tractably (or with meaningful
interpretation) mapped to the available imperfect labels.

A major source of confusion in labeling is the discretiza-
tion of labels, while emotions themselves are continuous
(basic emotions as a psychological model are outdated [1]).
Such discretization lacks two main aspects: intensity and
fusion. For example, anger can be of different intensities,
which may be expressed in sadness or fear [13]. More
specifically, the hidden intensity and the intermediate emo-
tions must be discovered to make the best use of the categor-

1Recognition accuracy on constrained CK+ [21] datasets is ⇡ 100%.
2AffectNet [22] reports an agreement of only 60.7% between experts.
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Figure 1: Conceptual illustration of a Gamut of emotions.
We learn to generate diverse/complex emotions merely us-
ing the labels of basic categorical emotions (blue arrows).

ical labels. This is by no means surprising if the motivation
of VA and compound emotions is considered. Therefore,
the categorical labels for spontaneous expressions must be
treated merely as proxies to the emotional states.

The main idea of this paper is to use categorical proxies
to discover the hidden intensity and fusion. As shown in
Figure 1, we represent every discrete emotion as an outgo-
ing vector from the neutral emotion. The length of the vec-
tor provides the intensity of that emotion. We learn these
vectors within the proposed framework. The fusion, on the
other hand, is represented using the samples in the interme-
diate space between the vectors of basic emotions. Two sets
of conditions are sampled from the conditional space: (i)
those along the vectors, and (ii) the others. When the sam-
ples are selected along the vectors, we ensure that the gener-
ated images can be classified to the corresponding categor-
ical emotion (represented by that vector), with confidence
in accordance with the intensity. Moreover, the generated
images must still be realistic, as well as recognizable in
the learned conditional space. In other words, such images
are used to regress the input conditions themselves. Such
strategy encourages a smooth transition of emotions in the
conditional space, as every generated image must be realis-
tic and inversely mappable – thereby generating faces with
various expressions mimicking the distribution of the real
images, via adversarial training.

In summary, our learned conditional space is continuous
and interpretable, which when used to generate images of-
fer the gamut of emotions [7]. Such learning – only from
categorical labels (e.g., ”happy”) – is possible thanks to the
proposed method. Note that the same is not possible by
interpolating between emotions using existing methods, as
they do not consider the issue addressed in this paper. More

specifically, conventional conditional GANs fail to do so, as
they use classification loss which encourages the generator
to generate only easily recognizable emotions. In contrast,
we introduce the learned labels of complex expressions and
reproduce them. The major contributions of this paper are:

• We introduce the problem of learning conditional
space for GANs, suitable for imperfect conditional la-
bels. This problem is shown to be well suited for the
task of emotion modelling and manipulation.

• A novel scheme for training conditional GANs, to
search for condition interpretability, has been pro-
posed. Our method enables us to generate a gamut of
emotions, using only the categorical emotion labels.

• Our experiments on the benchmark dataset demon-
strate the superiority of the proposed method, in terms
of both qualitative and quantitative measures.

In fact, we also introduces an another conditional space,
defined as a mixture of Gaussians, where each mode rep-
resents a basic emotion. This paper, however, will progress
with the linear representation of basic emotions, for the sake
of better readability. Once the linear model is well intro-
duced and established, we shall proceed with the second
approach. In the theoretical aspect, the Gaussian model dif-
fers only in terms of parameterization. From the experimen-
tal point of view, such modelling yields a better mixture (in
some sense compound) of emotions [8].

2. Related Works
Facial expression conditioning. Automatically under-
standing facial emotions has been a very active and con-
troversial topic in computer vision. Many theories have led
to different machine learning approaches, of which three
major affective computing models are: 1) Basic emotions,
first described by Ekman and Friesen [10] uses seven dis-
crete emotions such as “happy”, “sad” or “surprised”. 2)
Valence-Arousal (VA) model [31] describes facial emotions
in a continuous 2D space with Valence (i.e., how nega-
tive/positive is the emotion) and Arousal (i.e., how intense
is the emotion) parameters. 3) Action Units (AUs) are fine-
grained facial muscle movements [9], modelling expres-
sions as an ensemble of several and distinctive facial mus-
cles’ contractions or relaxations.

For emotion annotation, categorical models are often
preferred because of its simplistic nature, which leads to
no strict demand on sharp skills. Unfortunately, categori-
cal labels cannot describe mixed and more complex emo-
tions. Although VA and AUs based models are better rep-
resentative, VA is limited only in two qualities of valance
and arousal. For example, both scared and angry expres-
sions have high arousal and low valence, which makes them



largely ambiguous within VA-based modelling. On the
other hand, AUs demand an expensive labelling process and
yet do not reveal the emotion states directly.

Most existing methods [5, 24, 25] that use GANs [12] to
produce impressive results in manipulating facial images,
consider categorical emotions. In this regard, StarGAN [5]
uses conditional GANs to inject categorical labels in the
generator to produce domain-targeted images. GANima-
tion [24], which also proposes AU conditioning, exploits a
similar scheme while focusing on local transformations us-
ing an attention mechanism. Another method, SMIT [25]
switches the StarGAN’s deterministic output into a stochas-
tic noise-driven manipulation. This allows SMIT to pro-
duce many outputs from a single input. A major shortcom-
ing of [5, 24, 25] is their inability to go beyond labelled
emotion definition. At most, they can interpolate emotions
with often non-interpretable outcomes. Recently proposed
StarGAN-v2 [6] is an alternative to produce photo-realistic
conditioned image manipulation with impressive realism in
the interpolations, which may also be suitable for facial ex-
pression manipulation. Nonetheless, as Romero et al. [26]
suggested, StarGAN-v2 fails when involved domains are vi-
sually close, as it is the case of facial attributes or emotions.

For prior methods using conditional GANs [23], it is
common to assume an auxiliary classifier besides the dis-
criminator, which encourages the generator to reproduce
existing yet easily recognizable labels. Thus, categorical la-
bels cannot describe spontaneous expressions which usually
are ambiguous and complex. Examples include, “happily
surprised”, “sadly fearful”, their intensities, and other nu-
ances. Consequently, conditioning upon the basic emotions
will not allow producing a good variability of expressions.

In contrast to previous approaches, rather than condition-
ing on human-designed labels, we learn an expressive con-
ditional space Z (see Figure 1), in which we can produce
a gamut of emotions that are not explicitly labelled in the
dataset, hence creating new learned labels.

Semantic structure of GANs’ latent space. We aim to
capture the Gamut of human emotions in a conditional
space that allows for intuitive and seamless facial manip-
ulation. Recently, Voynov and Babenko [36] proposed a
method for the unsupervised discovery of human inter-
pretable directions within the latent space of a trained gen-
erator G. A reconstructor R and a number n of learnable
directions d

i

, i 2 {1, 2, ..., n} are introduced. Given G(x)

and G(x + ✏d

i

), with x latent code and ✏ ⇠ U([�c, c]), d
i

and R are learned so that the latter can regress i and ✏. In
this setup, d

i

should acquire a precise semantic disentangled
by others. Other interesting works on the inseparability of
latent space come from Härkönen et al. [14] and Schen et
al. [33]. Furthermore, Laine [19] observed that linearly in-
terpolating in the latent space of a trained generator is not

guaranteed to produce the smoothest transition by a visual,
nor does it by a semantic point of view. Therefore, a method
for searching by minimizing some feature-based loss was
suggested. Since we aim to learn an expressive conditional
space, we adapt a similar approach to make straight paths
semantically meaningful.

3. Problem Formulation

We focus on the problem of producing arbitrary emo-
tional facial expressions for a Gamut of emotions, given a
dataset of real facial expression images X = {x1, . . . , xN

}
as well as their corresponding categorical labels on the basic
emotions C = {c1, . . . , cN}, c

i

2 {1, . . . ,M}, where M is
usually 7. One natural solution is to exploit the methodol-
ogy of conditional generative adversarial networks (GANs),
which play an adversarial game between a generator G and
a discriminator D, to approximate the distribution of the
real emotional facial expressions, conditioning on the given
emotion labels. However, the major issue is that the given
basic emotion labels cannot faithfully cover the Gamut of
emotions of the real facial expressions due to the general
ambiguity of these. For example, a happily surprised face
might be only labelled as happy. On the other hand, as the
conventional GAN methods generally rely on a static con-
dition space Z that only encodes the given labels, they are
merely expected to approximate the distributions over the
pure basic emotions. Motivated by this, we introduce the
problem of making the GAN conditional space learnable.
In this way, it can deal with the imperfect emotion labelling
issue so that the conditional GAN methods can be enhanced
to discover the complete distribution of the given arbitrary
emotional facial expressions.
Approach I: For the new problem, we should exploit pa-
rameterization techniques on the GAN conditional space,
so that it can learn to encode the Gamut of emotions. One
feasible strategy is to parametrise a 2D conditional space
Z with polar coordinates (✓, ⇢)

3. The conditional latent
code is interpreted as a random variable z = (✓, ⇢), with
its coordinates coming from a uniform distribution: ✓ ⇠
U([0, 2⇡]), ⇢ ⇠ U([0, 1]). As illustrated in Figure 2 (left),
✓ is related to the quality/category of the emotion, whereas
⇢ represents its purity/intensity. For each basic emotion c

i

,
we parametrise its condition with z = (✓

ci , · ), where ✓

ci is
the learned direction for emotion c

i

.
Approach II: As spontaneous facial expressions are often
ambiguous, they could be better described by a label distri-
bution rather than a single categorical emotion. This mo-
tivates us to propose also a second parameterization. The
relative conditional latent code z is a 2D random variable
uniformly distributed: z ⇠ U(Z), Z = [�1, 1]

2. In

3The shape and the dimension of the space is inspired by the circumplex
model of affect of Russel [28]



Figure 2: Overview of the proposed method. During the training, one part of the batch is conditioned with codes randomly
sampled from Z (red points), and the other (blue points) sampled in the proximity of one of the learnable vectors (representing
basic emotion). Only the second part of the batch undergoes the classification loss (for categorical labels), so that red points
are free to encode any expression difficult to describe by basic emotions. All points are expected to generate realistic faces.

particular, the basic emotion c

i

is represented by a mode
z = (µ

ci ,⌃ci). This is characterized by a mean µ

ci =

tanh(w

ci), wci 2 R2 being a learnable parameter (the acti-
vation tanh() is used to constrain µ

ci in Z). On the other
hand, the corresponding covariance matrix ⌃

ci 2 R2⇥2 can
be parametrised by its eigenvalues �

2
1,ci ,�

2
2,ci , and eigen-

vector orientation ✓

ci , which define the alignment and the
length of the covariance ellipses axes respectively. Please
refer Figure 3 for a visual illustration.

4. Proposed Method
In this section, we describe our approach to learn-

ing the GANmut conditional space. The key idea is to
replace the static conditional space with our suggested
parametrised one by employing an off-the-shelf conditional
multi-domain GAN model (e.g., StarGAN [5]), so the
parametrised GAN model and the parametrised conditional
space can be jointly optimized in an adversarial manner.
The suggested polar parameterization on the conditional
space enables us to sample not only from the labelled ba-
sic emotions but also to explore the space representation.
The more complete and dynamic sampling on the condi-
tional space further allows us to discover the distributions
of the Gamut of emotions using a mixture of adversarial
loss, classification loss, and regression loss, which are em-
ployed to enhance the generator and discriminator to pro-
duce realistic-looking emotional facial expressions, predict
the basic emotion labels, and regress the continuous la-
tent variables, respectively. The overview of our proposed
model is illustrated in Figure 2. Additionally, we also ap-
ply a Gaussian parameterization of the conditional space
(that we will call GGANmut). To this end, we employ the
Kullback-Leibler (KL) divergence to replace the regression
loss so that the model can discover the Gaussian modes of
emotions. In the following sections, we explain in detail our

two proposals: the linear model and the Gaussian one.

4.1. Linear Model

The primary purpose of this model is to exploit a more
complete and dynamic sampling strategy on the polar char-
acterization of the conditional space. On the one hand, the
conditions associated with the basic emotions can be pro-
gressively optimized with the new strategy. On the other
hand, the conditions associated with more complex emo-
tions are sampled and updated simultaneously.

In particular, for each basic emotion c

i

, by sampling a
series of correlated latent codes ẑ

j

= (✓

ci , ⇢̂j) where ⇢̂

j

is progressively increased (i.e., ẑ
j

moves outward from the
origin in direction ✓

ci ), ✓ci will be updated so that the gen-
erated images y

ẑj should be classified as c
i

with increasing
confidence. Precisely, the discriminator D should classify
y

ẑ

as c

i

with the confidence being proportional to the dis-
tance ⇢̂

ci from the origin. As long as ⇢̂

ci is lower than
a certain threshold ⌧ , i.e., ⇢̂

j

< ⌧ (we empirically set
⌧ = 0.2 throughout the paper), D should classify y

ẑ

with
the neutral expression. A similar strategy applies for the
remaining emotions with the parametrised condition being
z = (✓, ⇢) 2 Z . The main difference is that ⇢ becomes now
proportional to the highest emotion classification Softmax
score attributed by D to the generated image y

z

.
Following the new sampling strategy, we suggest a mini-

batch sampling scheme. For each step of the gradient de-
scend, the mini batch S of size n is split into 2 subsets
(see Figure 2): 1) S

c

for basic emotions containing n

c

sam-
ples, and 2) S

r

for the other emotions containing n

r

sam-
ples. Based on this new sampling strategy, and as depicted
in Figure 2, we plug the learnable conditional space into a
regular conditional multi-domain GAN model4, which gen-
erally consists of two components: one is generator G and

4We use the well established StarGAN [5] as our backbone.



the other is discriminator D. The latter is trained to distin-
guish between real and fake facial expressions, whereas G
to fool D. Additionally, D serves as an emotion classifier,
with G trying to produce correctly classifiable expressions.
Rather than just synthesizing basic facial emotions, we need
to learn also the conditional space to achieve a Gamut of
emotions. In general, the problem of jointly learning a GAN
model and a GAN conditional space learning is a bi-level
problem. One feasible solution could be to optimize them
separately. However, this is likely to lead to a bad optimiza-
tion as they are highly dependent: a more expressive condi-
tional space will increase the capacity of the GAN model to
approximate the real data distribution more accurately, and
a more powerful GAN model encourages the conditional
space to become more expressive. Therefore, we suggest a
joint training scheme for them.

For the training of the conditional GAN models, we ap-
ply the regular GAN loss L

adv

(Equation 3) with Wasser-
stein [2] loss. Regarding the conditional GAN space, we
enforce an emotion classification loss L

cls

(Equation 4
and 5) to optimize progressively, besides G and D, the
parametrised directions ✓

ci so that they can be aligned with
the human labels. This will increase the interpretability of
the learned basic emotions directions over the conditional
space. Furthermore, we exploit a condition regression loss
L
info

(Equation 6), whose goal is to make D correctly es-
timate the expression coordinates ẑ 2 Z of real and gen-
erated images. This comes with increased mutual informa-
tion between z and G(x, z) [4]. The mixed-use of the three
major losses is expected to optimize jointly both the GAN
model and the conditional space. Moreover, we introduce
L
⇢

(Equation 7) to ensure that the interpolation along radii
is semantically meaningful. More precisely, moving out-
ward from the origin, emotion should be expressed more
clearly, which often aligns with a stronger intensity. Fi-
nally, inspired by [5, 37], we also apply the cyclic loss L

rec

(Equation 8) which performs a fundamental regularization
action. The full objective function, respectively, for D and
G is formulated as:

L
D

= �L
adv

+ �

cls

Lr

cls

+ �

infoDLinfo

, (1)

L
G

= L
adv

+�

cls

Lf

cls

+�

rec

L
rec

+�

infoGLinfo

+�

⇢

L
⇢

,

(2)
where all the involved hyperparameters are used to make a
trade-off among the correlated losses, and each loss is for-
mulated as follows:

L
adv

=E
x

[D

src

(x)]� E
x,z

[D

src

(G(x, z))]

� �

gp

E
x̂

h
(kr

x̂

D

src

(x̂)k2 � 1)

2
i
,

(3)

Lf

cls

= E
x,c,⇢

[� logD

cls

(c | G(x, z

c,⇢

(✓

c

)))] , (4)

Lr

cls

= E
x,c

0
[� logD

cls

(c

0 | x)] , (5)

L
info

= E
x,z

h
kD

coor

(G(x, z)))� zk22
i
, (6)

L
⇢

= E
x,z

h
k⇢̂(G(x, z·,⇢))� ⇢k22 ⇢>0.2

i
, (7)

L
rec

= E
x,z

[kx�G (G(x, z), D

coor

(x))k1] , (8)

where z is the conditional code passed to G during training,
c

0 is the dataset emotion label, c a randomly sampled label
(c d

= c

0), D
src

(x) denotes the probability, given by D, of
the input image x to be real, D

cls

(c

0 | x) the probability
assigned to the correct label, and D

coor

(x) the estimated
expression coordinates ẑ 2 Z of x. ⇢̂(x) = max

C

(D

cls

(c

i

|
x))). Finally, x̂ is sampled uniformly along a straight line
between a pair of a real and a generated images.

4.2. Gaussian Model (GGANmut)

With our suggested Gaussian parameterization of the
conditional space, an emotion distribution p

z

(c

i

) can be as-
sociated with each conditional code z 2 Z based on the
Mahalanobis distances from the modes. More precisely, the
Mahalanobis distance d

ci,z of z from the mode (µ
ci ,⌃ci) is

computed by d

ci,z =

q
(z � µ

ci)
T

⌃

�1
ci (z � µ

ci). We then
associate an emotion distribution p

z

(c

i

) with z such that

p

z

(c

i

) =

e

�d2ci,z

P
j e

�d2cj,z
. This association is based on the ratio-

nale that if mode c

i

has a Gaussian distribution, then d

ci,z

would be proportional to the square root of the negative log
likelihood that z is coming from mode c

i

.
The final goal of the training is, given a certain z, to

condition an image so that the new expression reflects the
emotion distribution associated with the latent code. If we
assume that the evaluation of D

cls

follows human expres-
sion judgement, then we can quantitatively describe the ex-
pression of a generated images x

z

= G(x, z) with the dis-
tribution label q

xz (ci) = D

cls

(c

i

| x

z

). Therefore, the
goal would be to minimise the expected divergence between
p

z

(c

i

) and q

xz (ci). To this end, we consider the loss:

L
div

= E
x,z

[KL(p

z

||q
xz ) +KL(q

xz ||pz)] , (9)

where KL(·||·) indicates the Kullback-Leibler (KL) diver-
gence. To encourage expression variability, and similar to
the previous model, for each iteration of the gradient de-
cent algorithm, we divided the mini-batch S into two sub-
sets S

r

and S

c

. The first split is conditioned with code
z ⇠ U([�1, 1]

2
), the second with µ

ci . In this case we apply:

Lf

cls

= E
x,c

[� logD

cls

(c | G(x, µ

c

))] (10)

Please note that the other loss terms including the adver-
sarial loss and the reconstruction loss are similar to those
(Equation 3 and 8) in the linear model, and they are reported
in the supplementary material.



5. Experimental Evaluation
Implementation Details. Our implementation is based on
StarGAN [5]. We set the number of training iterations to
1M for the proposed method and baselines, except for the
Gaussian variant, for which we set 1.8M. We adopted the
same training strategy of StarGAN, and the same hyper-
parameters, if shared. The others were chosen with a naive
qualitative approach. We observed a low sensitivity to �

info

(as in [4]). L
info

can not be ablated as it is necessary
to train D

src

, whereas a study of the impact of L
⇢

is re-
ported in Section 5.2. The chosen hyper-parameters are:
�

cls

= 1, (0.5) (GGANmut), �
gp

= 10, �
info

= 1, �
⇢

= 4,
�

div

= 2, n
c

= 9, (7) (GGANmut). The parameters of
emotion vectors and Gaussian modes were randomly initial-
ized. Please, refer to our supplementary material for more
implementation details.
Datatest. We trained our models and baselines from scratch
on AffectNet [22]. It is the largest dataset for affect com-
puting, collecting ⇡ 1M of images retrieved from the In-
ternet. Queries were performed on major search engines
(Google, Bing, Yahoo), using 1250 emotion-related key-
words in six different languages. Notably, 450K of these
images were annotated manually by 12 experts with basic
emotions. As we seek to learn complex and challenging
emotions in a very diverse setup, this dataset has become
our ideal choice. We selected images labelled as Neutral,
Happy, Sad, Surprised, Fearful, Scared, and Angry. For all
considered methods only these categorical labels were used.
Baselines. We compared both of our methods with three
state-of-the-art methods namely, StarGAN [5], GANima-
tion [24], SMIT [25]. StarGAN is the backbone of our
framework, GANimation adds an attention mask to focus
changes only where needed. SMIT leverages random noise
to produce multiple expressions for the same basic emotion.
We used the default hyper-parameters and training strategy
suggested by the authors of the competing methods. We
needed, however, to increase the value �

A

of GANimation
up to 1, to make L

A

effective on AffecNet.
Evaluation metric. Since GANmut is not constrained
to generate only categorical expressions, like StarGAN or
SMIT, it can better reflect the variability of human emotion.
To evaluate this quality, we adapt the popular Fréchet Incep-
tion Distance (FID) [15] score, by making it more focused
on Emotion. We will call the new metric Fréchet Emotion
Distance (FED). To obtain FED, we trained a VGGNet [34]
for emotion classification on AffectNet. We then feed the
VGGNet with real and fake images and extract the features
closest to the final classifier. Finally, assuming that the dis-
tributions of the two groups of features are Gaussian, we
compute their Fréchet distance. The hope is that FED is as
low as possible. The scores were computed on the test-set
of AffectNet, containing 500 samples for each categorical
emotion. For GANmut we conditioned images sampling

happy

sad

neutral surprised

disgusted fearful angry

Figure 3: Learned conditional space for the Gaussian model
(GGANmut). Each point of the space represents a label
distribution whose expression can be generated. The dis-
tributions represent the confidence of neutral, happy, sad,
surprised, fear, disgust, and angry (from left to right).

uniformly from the conditional space, whereas for SMIT,
GANimation, and StarGAN we sampled the categorical la-
bel from the test-set label distribution. For GGANmut, we
used the mean of the modes relative to those labels and
added some noise. We also provide other evaluation proto-
cols, which will be introduced in the following subsection.
As a proxy for human emotion evaluation, we will use the
softmax score of the trained VGGNet.

5.1. Learned Conditional Space

We visualise the learned conditional space of our meth-
ods in Figure 1 and Figure 3. Since the initialization of
parameters of the directions and the modes is random and
SDG is used for training, the outcome differs between train-
ing runs. However, across different experiments, it has been
noted that the final output tends to be very similar to the one
reported in the two figures. For GANmut, about half of the
conditional space is covered by the happy expressions (re-
flecting the unbalanced label distribution of the training set)
and they are opposed to negative valence ones. Note that
the emotion surprise is in between. Similar observations
can be done for the Gaussian variant of the model. One can
draw a striking similarity between human emotion under-
standing and the conditional space learned by our methods.

5.2. Semantic Interpolation and Smoothness

In this section, we evaluate the ability of our method
to express a basic emotion with different intensities. We
make a comparison with StarGAN as we want to show that
this virtue does not stem from the backbone of the method,
rather from the proposed framework. We also compare
GANmut trained with �

⇢

= 4 and �

⇢

= 1, to highlights
the effect of L

⇢

, see Figure 4 . In this regard, we compute
an interpolation in 10 steps between the neutral expression
and each basic emotion c

i

. For our method, we simply start
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Figure 4: Two examples of our method compared to Star-
GAN. StarGAN is our natural baseline also because of be-
ing our backbone. Top to bottom rows corresponds to Star-
GAN, proposed �

⇢

= 1 and �

⇢

= 4, respectively. For the
reference, the original image is provided in the first column.
The plots reflect the corresponding scores (details provided
in Table 1). Smoother transition are considered better. Inter-
polation is performed between neutral to extreme emotions
(upper: neutral to surprised, lower: neutral to angry).

from the origin of Z and then move in direction ✓

ci , (i.e.,
for each emotion c

i

, we compute x
ci,⇢j = G(x, z

ci,⇢j ) with
z

ci,⇢j = (✓

ci , ⇢j), ⇢j = 0.1 ⇥ j, j 2 {0, 1, ..., 10}). For
StarGAN we use a linear interpolation between the one-hot
vector encoding neutral and c

i

. To finally obtain a quan-
titative summary of the semantic smoothness over the en-
tire dataset, we pass the series to the VGGNet classifier C.
For each interpolation, we then compute the ratio between
the maximum increase, in one interval, of the classification
softmax score C(c

i

| x
ci,⇢j ) and its total variation range.

The results averaged over the dataset are reported in Table 1.
We have chosen this metric as we observed that StarGAN
switches suddenly from one expression to the other, without
expressing the emotion in a vague and mitigated way.

5.3. Complex Emotion Reconstruction

The Gaussian variant of GANmut (GGANmut) is espe-
cially suited to create complex and ambiguous expressions,
since it allows to combine many emotions at once. To as-
sess this property, we select a “complex emotion” target and
see which method manages to reproduce it better. To obtain
a quantitative results, as a proxy for human evaluation, we

StarGAN GANmut (ours)
Happy 0.79 0.38
Sad 0.44 0.38
Surprised 0.43 0.35
Fearful 0.49 0.37
Disgusted 0.55 0.36
Angry 0.59 0.33

Table 1: Smoothness score: maximum increase of the clas-
sification softmax score in one “strength” interval normal-
ized by its total variation range (see Section 5.2). We mea-
sure the smoothness during interpolation to quantify the
ability to generate emotions with different levels of inten-
sities. Our method is consistently better then the baseline.

ERE FED
Methods Setting 1 Setting 2

Real – – 0.21
StarGAN [5] 0.038 0.037 4.89

GANimation [24] 0.036 0.037 2.17
SMIT [25] 0.028 0.029 1.89

GGANmut (ours) 0.020 0.018 18.32
GANmut (ours) 0.025 0.025 0.71

Table 2: Comparison with the state-of-the-art methods. The
FED score for “Real” is obtained comparing real images
from two halves of the test-set. ERE represents the ability
to generate a given target emotions. For the experiment we
choose them among particularly complex ones. More pre-
cisely, in Setting 1, we chose a target label distribution with
at least 3 high values, while in Setting 2 with at least 2.

use the softmax score of the VGGNet classifier. During this
process, the test-set is divided into batches of 16 images.
For each batch, the images are passed to the VGG classifier,
and the softmax scores with the highest top 2 or top 3 values
is selected as label distribution target (these should corre-
spond to the most ambiguous expressions). Then, for each
method (StarGAN, SMIT, GANimation, GANmut, GGAN-
mut), we search on a grid the best conditional code, in terms
of mean squared error (MSE), that allows reproducing the
target label distribution when passed to the VGG. For Star-
GAN, GANimation, and SMIT we search over the 7 cate-
gorical emotions. Regarding the multimodalities in SMIT,
we sample 63 different representations for each emotion.
For GANmut, we search on a grid with steps of 0.05 radii
and 2⇡/21 angles, whereas we use steps of 0.1 for GGAN-
mut. The scores are averaged over each sample of the test-
set, which we call Emotion Reconstruction Error (ERE),
and are reported in Table 2 together with the FED scores.



StarGAN SMIT

GANimation GANmut

Figure 5: Low dimensional visualization (tSNE) of VG-
GNet features from real and generated images. Methods
with FED scores: StarGAN (4.89); SMIT (1.89); GANima-
tion (2.17); GANmut (0.71). The orange and blue points
correspond to real and generated images, respectively.

Input SMIT GANimation StarGAN

GANmut ! ! GANmut

Figure 6: Visual results synthesized (sad conditioning) by
different methods. Top left to right: Input image, SMIT,
GANimation, StarGAN. At the bottom: Multiple images
form the Gamut of emotions. More visual results are pro-
vided in the supplementary material.

The visualization in a 2D space by means of tSNE [35] of
the feature distribution is provided in Figure 5. Some vi-
sual comparisons are also provided in Figure 6. Finally, in
Table 3 we report the classification error with the VGGnet
over the generated images (z = (✓

c

, 1), z = µ

c

were used
for (G)GANmut). As it can be seen, real images present
expressions much more ambiguous then generated ones by
the compared methods (details in Suppl. Sec. 4).

5.4. Discussion

As we can see from Figure 3, GGANmut can gener-
ate plausible expression mixing up to 4 different emotions.
As such, we can not really know what the man is feeling,

Neutral Happy Sad Surprised Fearful Disgusted Angry
Real 76.4 93.4 57.8 46.0 46.4 30.4 57.2
StarGAN 92.6 96.1 96.9 95.4 94.7 95.1 95.8
GANmut 87.8 99.2 96.5 91.6 87.5 77.4 97.9
GGANmut 95.8 99.6 99.9 99.1 97.6 97.8 99.5
GANimation 78.4 96.4 76.0 76.0 59.7 52.4 79.6
SMIT 87.4 98.7 87.5 85.5 80.0 78.8 84.6

Table 3: Classification accuracy of generated images.

GGANmut ! ! GGANmut

Figure 7: The emotion interpolated from the gamut of emo-
tions using the proposed Gaussian model. Please observer
the compoundness of the emotions, and note that they are
obtained using only the basic emotion labels. More visual
results are in the provided in the supplementary material.

could be Anger, Fear, Surprise or Disgust. Similarly, in Fig-
ure 7, the lady expresses her anger in different ways, with a
touch of impatience, disgust, and surprise. We then reach a
level of complexity, of expression ambiguity, that is closer
to ones of human emotion. One reason we suspect why
GGANmut is better in ERE but not in FED is its ability to
generate extremely ambiguous (hence rare) emotions when
sampled randomly, and too recognisable if sampled around
the mode’s centre. We consider this a virtue, not a vice (re-
fer Section 5 in the supplementary for further discussion).

6. Conclusion

We proposed a new problem of searching the label space
employing only the images and the proxy labels to them.
Two parameterizations for emotion modelling were ex-
plored, each with its own benefit according to our experi-
ments. We also observed that the label space learned by our
method already resembles the existing continuous model of
VA. We strongly believe that this approach opens up the
possibility of learning new label spaces for emotion mod-
elling, and beyond. On the side of image synthesis, learn-
ing a better conditional space also allowed us to both con-
trol and generate diverse/complex emotions in a very spon-
taneous fashion, using only the basic emotion labels during
training. Our work also shows that one can leverage the data
to re-define the label, in cases where the labels’ definition is
not very reliable. We showed via several experiments that
the problem of emotion modelling falls into such category,
thereby allowing us to uncover a better conditional space
for spontaneous emotion synthesis.
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1. Structure of this document
In the document we first provide the details of our

method, which were missing due to the lack of space in
the main paper. Later we will provide more qualitative and
some quantitative results for further analysis. A section that
continues the discussion of the paper is also introduced.

2. Gaussian model loss
Besides losses Lf

cls

(eq. 10) and L
div

(eq. 11), to com-
plete the loss terms of the Gaussian model we have:
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Therefore, the final loss is:
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3. More implementation and training details
In this section we will first give more details about the

implementation of the linear model and then we will pass to
the experimental evaluations .

GANmut. The learnable vector ✓
c

was encoded through
a unitary L2 vector v

c

=

[vc1,vc2]
t

||[vc1,vc2]t||2 , v
c1, vc2 2 R ran-

domly initialized from U(�10

�4
p
1/6, 10

�4
p
1/6). In

practice, samples from S

c

were conditioned with code
ẑ = (✓

c

, ⇢) = ⇢ ⇤ v

c

. Additionally, to make more robust
the learning process, Gaussian noise of standard deviation
equal to 0.1 was added to ẑ, before to pass it to the gen-
erator. GGANmut. mu

c

= tanh(w

c

) was randomly ini-
tialized with default Pytorch settings, (i.e., w

c

was sampled
from U(

p
0.5,

p
0.5)). ✓

c

was initialized with 0, and �

2
·,c

with 1. Training. The same training strategy of StarGan
was adopted: Adam with �1 = 0.5 and �2 = 0.999, five
discriminator updates every one of the generator, a batch
size of 16 samples, a linear weight decay to 0 in the last
100K iterations and image augmentation. The GPUs farm
used included Titan X, Titan Xp , GTX 1080 Ti. The num-
bers of iterations performed in 1 day varied between 130K
and 250K, depending on the GPU and on the method.

4. Classification Error
As the authors of StarGAN evaluate quantitatively their

method based on the classification accuracy obtained by
the generated images, we replicate here the test. We again
used the VGG trained on AffectNet. To obtain the results,
for each emotion c we conditioned all the images of the
test set. For GANmut we have taken the conditional code
z = (✓

c

, 1), for GGANmut z = µ

c

, and for SMIT we condi-
tioned on c, sampling new random noise each time. Results
are shown in table 1. As it can be seen, real images present
expressions much more ambiguous then generated ones.

5. Why FED score for GGANmut is so high?
The left plot of Figure 1 may suggest why GGANmut,

conditioned on emotion means µ
c

(plus some small random
noise, as in the evaluation settings) have a FED score much
higher then the other methods. In particular, as one can
notice, its VGG-features distribution clearly clusters in 7
groups. These clusters are likely to represent the 7 categor-
ical emotions. Hence GGANmut manages, if conditioned
on means, to produce intense expressions that are more eas-
ily classifiable than competitors. This is confirmed also by
results in table 1. However, spontaneous expressions are of-



Neutral Happy Sad Surprised Fearful Disgusted Angry
Real 76.4 93.4 57.8 46.0 46.4 30.4 57.2
StarGAN 92.6 96.1 96.9 95.4 94.7 95.1 95.8
GANmut 87.8 99.2 96.5 91.6 87.5 77.4 97.9
GGANmut 95.8 99.6 99.9 99.1 97.6 97.8 99.5
GANimation 78.4 96.4 76.0 76.0 59.7 52.4 79.6
SMIT 87.4 98.7 87.5 85.5 80.0 78.8 84.6

Table 1: Classification accuracy of generated images with different method. Real is the classification error of real images,
using as ground truth the test set annotation.

GGANmut
Real Real

GGANmut

Figure 1: t-SNE plots of VGG features extracted from im-
ages generated by GGANmut (blue) and from real images
(orange) . Left: Conditioning around models of mean µ

c

.
Right: conditioning uniformly selected samples from Z .

ten less intense and recognisable, reason for which we think
the FED score is higher then other methods. On the other
hand, if we condition sampling from the entire Z, complex
emotions, mixing up 4 basic emotion, will be generated.
These expressions, albeit realistic, are even less common,
further increasing the FED score (see right plot of Figure
1). Hence, what penalizes GGANmut in the FED test, it is,
actually, its strength. In other words, its ability to reproduce
the desired emotion as shown from ERE score (Table 2 of
the main paper) and classification error (Table 1 ).

6. More qualitative results

We present more qualitative results for the Gaussian
model. In Figure Figure 2 and Figure 3, we created expres-
sions that are difficult to classify inside only one categorical
emotion. In Figure 4 we show how the model manage to
create different emotion nuances by slight expression mod-
ification. And in Figure 5 we show that our model, (taking
different conditional codes z1 and z2) can produce differ-
ent expressions even if the label distributions p

z1 and p

z2

are practically the same. More qualitative results of our
two models, in comparison with the state-of-the-art meth-
ods, are shown in Figure 6, 7, 8. In Figure 9, 10, 11, we
provide more samples synthesized by our linear model. As
it can be noticed, with a lower ⇢ emotions are vague, and
expression change smoothly. With ⇢ = 1 emotions become
more intense, and expression may change sharply.

7. StarGAN v2

We attempted to produce multiple expressions for the
same categorical label using StarGAN-v2. However, as
shown in Figures 12 and 13, the method fails to leverage
random styles to produce different expressions. This is the
reason why we adopted SMIT as our baseline. Note that the
StarGAN-v2 was not originally designed for emotion ma-
nipulation. Further discussion in this regard can be found in
the related works of our paper.

8. Discussion

We observed that the ambiguous supervision of chal-
lenging AffectNet dataset – that involves plethora of spon-
taneous emotions – leads the existing methods to perform
poorly. Furthermore, attention-based methods are observed
to create artifacts for non-frontal and occluded faces. This
particularly turns out to be the case when GANimation,
which was originally designed for AU-based control, is
trained for categorical emotions. The quality may have been
further degraded due to the unreliable annotations of Af-
fectNet. A similar argument can also be made in regard
to SMIT. After all, both the original designs aim at some-
what a different goal (please refer to the related works of
our paper). The user study is avoided as we observe that
the proposed method is clearly better than the competitors
in almost all the cases. Please, refer to more qualitative
results provided in the supplementary materials. On other
small scale datasets, when we tested our method, although
a similar behaviour was observed, the achieved improve-
ments were not very prominent. We believe, this is due
to the fact that the existing small scale datasets are either
non-representative of the spontaneous emotions or are not
large enough to model the complex gamut of human emo-
tions. Note that, when the proposed method is restricted,
by avoiding intensity and fusion search, it becomes very
similar to StarGAN. Therefore, our method can always per-
form at least as good as the StarGAN. Our desire to model
spontaneous emotions and associated issues with the labels
makes the AffectNet our ideal candidate. We refrain to re-
port the results of our method on small and controlled (or



curated by avoiding the ambiguous emotions) datasets, as
we think that may distract readers from our original intent of
modeling spontaneous emotions. Moreover, the presented
results are obtained for the most challenging (from the data
availability point of view) setup.



Figure 2: Expression generated using the Gaussian model. In the first column it is provided the label distribution associated
with the used conditional code. These images are representative to the complex emotions, which may not be easily classified
to basic categorical emotions.



Figure 3: Expression generated using the Gaussian model. In the first column it is provided the label distribution associated
with the used conditional code. These images are representative to the complex emotions, which may not be easily classified
to basic categorical emotions.



Figure 4: Expressions generated with the Gaussian model.
Even though the expression are pretty similar, they convey
different emotional nuances.

Figure 5: Expressions generated with the Gaussian model.
Different conditional codes, associated with the same label
distribution, can produce different expressions.



StarGAN ! ! ! ! ! StarGAN

SMIT ! ! ! ! ! SMIT

GANimation ! ! ! ! ! GANimation

GANmut ! ! ! ! ! GANmut

GGANmut ! ! ! ! ! GGANmut

Figure 6: Images synthesized by different methods. Top: basic categorical emotions synthesized by StarGAN, SMIT, and
GANimation. Randomize emotions form emotion gamut using our methods: GANmut (middle) and GGANmut (bottom).



StarGAN ! ! ! ! ! StarGAN

SMIT ! ! ! ! ! SMIT

GANimation ! ! ! ! ! GANimation

GANmut ! ! ! ! ! GANmut

GGANmut ! ! ! ! ! GGANmut

Figure 7: Images synthesized by different methods. Top: basic categorical emotions synthesized by StarGAN, SMIT, and
GANimation. Randomize emotions form emotion gamut using our methods: GANmut (middle) and GGANmut (bottom).



StarGAN ! ! ! ! ! StarGAN

SMIT ! ! ! ! ! SMIT

GANimation ! ! ! ! ! GANimation

GANmut ! ! ! ! ! GANmut

GGANmut ! ! ! ! ! GGANmut

Figure 8: Images synthesized by different methods. Top: basic categorical emotions synthesized by StarGAN, SMIT, and
GANimation. Randomize emotions form emotion gamut using our methods: GANmut (middle) and GGANmut (bottom).
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Figure 9: Wheel of emotion generated by the GANmut. It was set ⇢1 = 0.6.
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Figure 10: Wheel of emotion generated by the GANmut. It was set ⇢1 = 0.4, and ⇢2 = 1.
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Figure 11: Wheel of emotion generated by the GANmut. It was set ⇢1 = 0.4, and ⇢2 = 1



Figure 12: Happy expressions generated with StarGAN-v2. The first row is the input. Different rows correspond to different
random styles.

Figure 13: Fearful expressions generated with StarGAN-v2. The first row is the input. Different rows correspond to different
random styles.


